

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

This Paper was downloaded from SAEXAMPAPERS

DEPARTMENT OF EDUCATION

NATIONAL SENIOR CERTIFICATE

GRADE 12

PHYSICAL SCIENCES PAPER 2

MEMO

PREPARATORY 2025

MARKS: 150

TIME: 3 Hours

This Marking Guidelines consist of 10 pages including the cover page

1.1	C√✓	(2)
-----	-----	-----

$$1.2 \qquad \mathsf{A}^{\checkmark} \checkmark \tag{2}$$

$$1.6 \qquad \qquad \boxed{4} \checkmark \checkmark \tag{2}$$

QUESTION 2

- 2.1 Chain isomers are compounds with the same molecular formula but different types of chains. ✓✓ (2)
 - 2.2.1 C√ (1)
 - 2.2.2 4 bromo 2,2 dimethylpentane√√√

Notes:

- 1. Bromo, dimethyl identified√
- Pentane√
- Whole structure correct√ (3)

[20]

(2)

(2)

2.2.3 Pent - 1 - ene√√

Notes:

- Correct functional group√
- Whole structure correct√
- $2.2.4 \quad C_nH_{2n}\checkmark$ (1)

Notes:

- Correct functional group√
- 2. Whole structure correct√
- 2.4 $C_5H_{12} + 8O_2 \checkmark \rightarrow 5CO_2 + 6H_2O \checkmark (\checkmark balance)$ (3)
- 2.5 Aldehydes√ (1)

2.6
$$20\% C - atoms in comp. C = \frac{20}{100} \times 5 \checkmark$$
$$= 1 \checkmark$$

Compound E has 6 C - atoms

$$\therefore$$
 x = 6 \checkmark and y = 14 \checkmark **OR** (x = 6 \checkmark \checkmark and y = 14 \checkmark \checkmark)

[19]

(4)

QUESTION 3

3.1 Melting point is the temperature at which the solid and the liquid phases (2)of a substance are at equilibrium. 3.2 As the chain length/molar mass/number of carbon atoms increases, the boiling/melting point increases. ✓✓ (2)3.3 Stronger than. ✓ (1)3.4 Fair. ✓ The compounds belong to the same homologous/intermolecular force/functional group/there is only one independent variable.✓ (2)3.5 Gas. ✓ (1)3.6 Propane has a longer chain length/larger/ surface area/ bigger molecular size/more carbon atoms than ethane.√ Both have London forces/dispersion/dipole-dipole which are stronger between propane molecules than in ethane. //the intermolecular

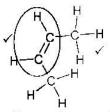
OR

- Ethane has shorter chain length/smaller surface area/smaller molecular size/less carbon atoms than propane.√
- Both have London forces/dispersion/dipole-dipole which are weaker between ethane molecules than in propane.√

More energy is needed to overcome the intermolecular force in

Less energy in needed to overcome the intermolecular forces in ethane than in propane.

(3)[11]


forces of propane are stronger

propane than in ethane.√

- 4.1.1 Substitution/hydrolysis√ (1)
- 4.1.2 Butan 2 ol ✓ Accept 2-butanol (1 mark for butanol, 1 mark for position)

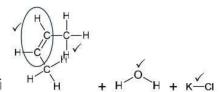
(2)

4.2.1

Notes:

- Correct functional group√
- 2. Whole structure correct√

(2) (1)


4.2.2 (Strong) Heat√

4.3.1

H CI H H

H C C C C C H

CODE KOH in etha

(5)

4.3.2 Positive marking form 4.3.1

But-2-ene. ✓ ✓ /Accept 2-Butene (1 mark for butene, 1 mark for position)

(2)

4.4.1 Addition/hydrogenation.✓

(1)

4.4.2 Ni/Pt/Pd/Nickel/Platinum/Palladium.√

(1)

4.5.1 Cracking is the chemical process in which longer chain hydrocarbon molecules are broken down to shorter more useful molecules.✓✓

(2)

4.5.2 Catalyst (Pt, Pd and Ni).√

(1)

5.1	Rate of reaction is the change in concentration of reactants or products per unit time. $\checkmark\checkmark$	(2)
5.2	Neutralisation reaction. ✓ / Acid-base reaction	(1)
5.3	State of division/surface area.✓	
5.4	Rate of reaction.✓	(1)
5.5	$n(CO_2) = \frac{v}{V_m} \checkmark$ = $\frac{53}{22400} \checkmark$ = 0,002366 mol	
	$n(HCl) = \frac{2(0,002366)}{22400} \checkmark$ = 0,004732 mol	
	$Rate = \frac{\Delta n}{\Delta t} \checkmark$ $= \frac{0,004732}{60} \checkmark$ $= 0,0000789 \ mol. \ s^{-1}/(7,89 \times 10^{-5} mol. \ s^{-1}) \checkmark$	(5) [10]

Copyright reserved

6.1.1 Chemical equilibrium is a dynamic equilibrium when the <u>rate of the</u>
forward reaction equals to the rate of the reverse reaction.√√

(2)

6.1.2		SO ₂	O ₂	SO ₃	
	Ratio	2	1	2	
	Initial amount(mol)	x	0,5	0	
	Change	-0,75	-0,375✓	0,75	√Ratio
	Equilibrium	x - 0,75	0 ,125✓	0,75	
	Concentration	$\frac{x-0,75}{2}$	0,0625	0,375	√ ÷ 2

$$\begin{split} K_c &= \frac{[SO_3]^2}{[SO_2]^2[O_2]} \checkmark \\ 10 \checkmark &= \frac{(0.375)^2}{\left(\frac{x-0.75}{2}\right)^2(0.0625)} \checkmark \end{split}$$

$$x = 1,70 \text{ mol} \checkmark \tag{8}$$

6.1.3 Positive marking from 6.1.2

$$n = \frac{m}{M} \checkmark$$

$$1,70=\frac{\mathrm{m}}{64}\checkmark$$

$$\therefore \mathbf{m} = \mathbf{108}, \mathbf{8g} \checkmark \tag{3}$$

6.2.1 Decreases.√ (1)

6.2.2 Stays the same. ✓ (1)

6.2.3 Decreases. ✓ A decrease in pressure favours the reaction that produces more moles of gas/more volume. ✓ The reverse reaction is favoured. ✓
 (3)
 [18]

- 7.1 A weak base is a base that ionises/dissociates incompletely in water to form a low concentration of hydroxide ions.✓✓ (2
 - (2)

7.2 **Option 1**:

[
$$H_3O^+$$
] = 2 x 0,02 \checkmark = 0,04 mol.dm⁻³
 $K_w = [H_3O^+][OH^-]\checkmark$
1 x 10⁻¹⁴ = 0,04 [OH⁻] \checkmark [OH⁻] = 2,5 x 10⁻¹³ mol.dm⁻³ \checkmark
Option 2:
 $pH = -log[H_3O^+]\checkmark$
= $-log(0,04)$ \checkmark

$$= 1,398$$

pH + pOH = 14

$$pOH = 12,602$$

$$pOH = -log[OH^-]$$

$$12,602 = -\log[OH^{-}]$$

$$[OH^{-}] = 2,50 \times 10^{-13} \text{mol.dm}^{-3} \checkmark$$

(4)

7.3.1
$$n(H_2SO_4) = cv\checkmark$$

= $(0,02)(0,025)\checkmark$
= $0,0005 \, mol$
 $n(NH_3) = 2(0,0005)\checkmark$
= $0,001 \, mol$

[NH₃] in diluted solution =
$$\frac{c}{V}$$

= $\frac{0,001}{0,0312}$
= $m0,032051 \, mol$

$$n(NH_3)$$
 in 250 cm³ = cv

$$= 0.032051 \times 0.25$$

$$= 0,0080128 \, mol$$

 $n(NH_3)$ in 250 cm³ = $n(NH_3)$ in 20 cm³ of undiluted solution

$$[NH_3] = \frac{n}{V}$$
$$= \frac{0,080128}{0,02} \checkmark$$

$$= 0.4 \ mol. dm^{-3} \checkmark$$

(7)

7.3.2 Below 7√

$$NH_4^+ + H_2O\checkmark \longrightarrow NH_3 + H_3O^+\checkmark\checkmark$$
 (4)

7.4.1 An Ampholyte is a substance that can act as either an acid or a base 🗸 (2)

7.4.2
$$HC_2O_4^{-}\sqrt{}$$
 (1)

7.4.3
$$H_2C_2O_4\checkmark$$
 and $H_3O^+\checkmark$ (2)

[22]

8.1		A galvanic cell is a cell in which chemical energy is converted to electrical energy.	(2)
8.2		Concentration of 1mol.dm ⁻³ √	
		Temperature of 25 ⁰ C/298K√	(2)
	8.3.1	Pt√	(1)
	8.3.2	Cr✓	(1)
8.4		2 mol.dm ⁻³ √	(2)
8.5		$3Sn^{4+} + 2Cr \checkmark \longrightarrow 3Sn^{2+} + 2Cr^{3+} \checkmark (\checkmark balancing)$	(3)
8.6		$E^{\theta}_{cell} = E^{\theta}_{cathode} - E^{\theta}_{anode}$	
		= +0,15√- (-0,74)√	
		= +0,89V√	(4)
8.7		Decreases.✓	(1)
			[16]

9.1 Electrolysis is the chemical process in which electrical energy is converted to chemical energy.✓✓ (2)

Notes/Notas:

Ignore phases/ignoreer fases

$$Cu^{2+} + 2e^{-} \leftarrow Cu (2/2)$$
 $Cu^{2+} + 2e^{-} \leftrightarrow Cu (0/2)$

$$Cu \leftrightarrow Cu^{2+} + 2e^{-}(1/2)$$
 $Cu^{2+} + 2e^{-} \rightarrow Cu(0/2)$ (2)

9.3 Impure copper.√

9.5
$$mass\ of\ copper + impurutues = 600 - 390 \checkmark$$

= 210g

mass of pure copper = 320 - 150

$$= 170g$$

$$\% purity = \frac{170}{210} \times 100 \checkmark$$
= 80,95% \(\square\$ (4)

9.6 It remains constant. ✓ The rate of oxidation of copper is equal to the rate of reduction of copper ions. ✓ ✓ (3)

[16]

(1)

TOTAL: 150