

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

This Paper was downloaded from SAEXAMPAPERS

education

Department:
Education
North West Provincial Government
REPUBLIC OF SOUTH AFRICA

PROVINCIAL ASSESSMENT

GRADE 12

PHYSICAL SCIENCES: CHEMISTRY (P2)
JUNE 2025

Marks: 150

Time: 3 hours

Copyright reserved

This question paper consists of 17 pages and 2 data sheets.

SA EXAM PAPERS

Proudly South African

Please turn over

NW/June 2025

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. Write your name on the ANSWER BOOK.
- 2. This question paper consists of EIGHT questions. Answer ALL the questions in the ANSWER BOOK.
- 3. Start EACH question on the NEW page in the ANSWER BOOK.
- 4. Number the answers correctly according to the numbering system used in this question paper.
- 5. Leave ONE line between two subquestions, e.g. between QUESTION 2.1 and QUESTION 2.2.
- 6. Give brief motivations, discussions, etc. where required.
- 7. You may use a non-programmable calculator.
- 8. You are advised to use the attached DATA SHEETS.
- 9. Show ALL formulae and substitutions in ALL calculations.
- 10. Round off your FINAL numerical answers to a minimum of TWO decimal places.
- 11. You are advised to use the attached DATA SHEETS.
- 12. Write neatly and legibly.

QUESTION 1: MULTIPLE-CHOICE QUESTIONS

Various options are provided as possible answers to the following questions. Each question has only ONE correct answer. Choose the answer and write only the letter (A-D) next to the question numbers (1.1 to 1.10) in the ANSWER BOOK, e.g. 1.11 E.

1.1 Study the structural formula of a ketone below:

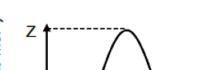
Which ONE of the following is a structural isomer of the ketone shown above?

- Α Propan-2-one
- В Propanone
- C Propanal
- D Propane (2)
- 1.2 Consider the organic compound CH₃CH(OH)CH₂CH₃, the IUPAC name of the CHAIN isomer of this compound is:
 - Α Butan-2-ol
 - В Butan-3-ol
 - C 2-Methylpropan-2-ol
 - D 2-Methylpropanal
- 1.3 Which ONE of the following combinations are the three compounds arranged in order of decreasing (highest to lowest) vapour pressure?

Α	CH ₃ CH ₂ CH ₃	CH ₃ CH ₂ COOH	CHOOCH ₂ CH ₃
В	CH ₃ CH ₂ CH ₃	CHOOCH ₂ CH ₃	CH ₃ CH ₂ COOH
С	CHOOCH2CH3	CH₃CH2COOH	CH ₃ CH ₂ CH ₃
D	CH₃CH2COOH	CHOOCH2CH3	CH ₃ CH ₂ CH ₃

(2)

(2)


1.4 Consider the ELIMINATION reaction below:

$$C_8H_{18} \rightarrow X + C_4H_{10}$$

The name of the organic product **X** is:

- Α Butane
- В Butan-2-ol
- C But-2-ene

1.5 Consider the potential energy graph for the hypothetical reaction:

 $2\mathsf{P}\to\mathsf{P}_2$

The heat of the reaction (ΔH) is represented by:

- Α Z - Y
- X YВ
- С Y - X

$$D Y - Z (2)$$

- 1.6 Which ONE of the following is a product in ALL neutralisation reactions?
 - Α Hydronium ion
 - В Hydrogen oxide
 - C Hydroxide ion
 - (2) D Hydroxyl group

NW/June 2025

Please turn over

1.7 Chromate ions and dichromate ions are in equilibrium with each other in an aqueous solution according to the following balanced equation:

$$2CrO_4^{2-}(aq)+2H^+(aq) \rightleftharpoons Cr_2O_7^{2-}(aq)+H_2O(\ell)$$
 yellow orange

Which ONE of the following reagents should be added to change the colour of the solution to yellow?

- Α HNO₃
- В HCℓ
- C NaOH
- D CH₃COOH (2)
- 1.8 Consider the following reaction:

$$CH_3NH_2(aq) + H_2O(\ell) \rightarrow CH_3NH_3^+(aq) + OH^-(aq)$$

The CH₃NH₂ acts as a/an ...

- Α proton donor.
- В proton acceptor.
- C oxidising agent.
- (2) D reducing agent.

NW/June 2025

1.9 The yield in a certain reversible reaction at equilibrium at temperature **T** and pressure **P** is 40%.

A certain catalyst is added to the reaction mixture at the start of the reaction and the reaction reaches equilibrium at the same temperature **T** and pressure **P**.

What effect will the addition of a catalyst have on the yield and rate of reaction?

	Yield	Reaction rate
Α	Remains 40%	Higher
В	Remains 40%	Remains the same
С	Higher than 40%	Higher
D	Higher than 40%	Remains the same

(2)

The pH of a 0,5 mol·dm⁻³ HNO₃ is:

Α 0,2

В 0,0301

C 0,3

D 0,03 (2) [20]

NW/June 2025

QUESTION 2 (Start on a new page.)

- 2.1 (2) Define the term molecular formula.
- 2.2 The IUPAC name of a haloalkane is 2-chloro-3,4-dimethylhexane.
 - 2.2.1 Write down the molecular formular of this compound. (1)
 - 2.2.2 Draw the structural formula of this compound. (2)
 - 2.2.3 Is this compound a PRIMARY, SECONDARY or TERTIARY haloalkane. Give a reason for the answer. (3)
- 2.3 Study the structural formulae for compounds **A** and **B** given below:

Α	В
H O H H-C-C-O-C-H H H	CH3-CH2-COOH

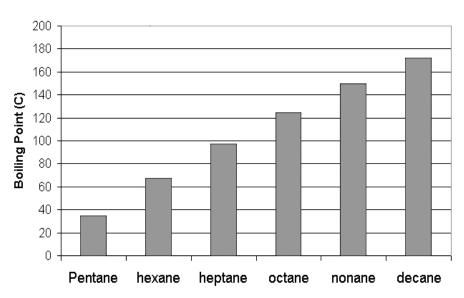
Compounds **A** and **B** are isomers.

- 2.3.1 Write down the NAME of the functional group of the homologous series to which compound **B** belongs. (1)
- 2.3.2 What TYPE of isomers are these compounds? Give a reason for the choice. (3)
- 2.3.3 Write down the IUPAC name of compound **A**. (2)
- 2.4 Study the structural formula of the compound below:

Write down the:

- 2.4.1 **IUPAC** name (3)
- 2.4.2 General formula of the homologous series to which it belongs (1)
- 2.4.3 Balanced chemical equation for the complete combustion in excess (3) SA EXAM PAPERS [21]

Copyright reserved


This Paper was downloaded from SAEXAMPAPERS
Grade 12

NW/June 2025

QUESTION 3 (Start on a new page.)

Learners investigated one of the factors that affect the boiling point of straight chain alkanes. They recorded their results in the graph shown below:

Boiling Points of Straight Chain Alkanes

- 3.1 For this investigation, write down:
 - 3.1.1 An investigative question

(2)

3.1.2 Controlled variable

(1)

Is the above investigation a fair comparison? YES or NO. Give a reason for the answer.

(2)

3.3 Define *vapour pressure*.

3.2

(2)

3.4 Consider PENTANE and HEXANE, which compound has a higher vapour pressure? Explain the answer, refer to MOLECULAR STRUCTURE, STRENGTH of INTEMOLECULAR FORCES and ENERGY.

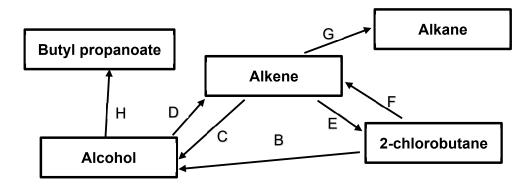
(4)

- 3.5 Two compounds BUTAN-1-OL and BUTANOIC ACID have different boiling points.
 - 3.5.1 Which compound has a lower boiling point?

(1)

3.5.2 Explain the answer to QUESTION 3.5.1 by referring to TYPE and STRENGTH of INTERMOLECULAR FORCES.

(3)


[15]

QUESTION 4 (Start on a new page.)

Study the flow diagram below.

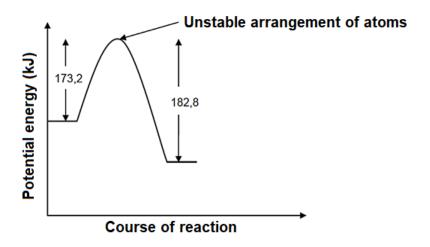
Letters **B** to **H** represent different organic reactions:

Name the TYPE of reaction represented by letter: 4.1

- 4.1.1 C (1)
- 4.1.2 В (1)
- 4.1.3 F (1)
- 4.2 What TYPE of alcohol is produced in reaction **C**? Choose from PRIMARY, SECONDARY or TERTIARY. (1)
- 4.3 Reaction **D** is dehydration of an alcohol. What is meant by "dehydration of alcohols"? (1)
- 4.4 Using STRUCTURAL FORMULAE write down a balanced chemical reaction for reaction E. (4)
- 4.5 Reaction **H** represents a reaction between an alcohol and a carboxylic acid in the presence of a catalyst.

Write down the:

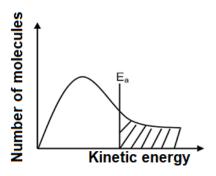
- (1) 4.5.1 FORMULA of the catalyst
- 4.5.2 Balanced chemical reaction using CONDENSED formulae (5)
- 4.5.3 Name of the carboxylic acid that was used as a reactant in this reaction (2)


- 4.6 Write down TWO reaction conditions for reaction **F**. (2)
- 4.7 Consider reaction **G**:
 - 4.7.1 Besides platinum (Pt) used as a catalyst, write down the NAME or FORMULA of another catalyst that could be used (1)
 - 4.7.2 Write down the molecular formula of the alkane formed (1) [21]

QUESTION 5 (Start on a new page.)

The reactions involving iodine are commonly used to investigate rates of reaction. One reaction involves hydrogen and iodine to form hydrogen iodide.

$$H_2(g) + I_2(g) \rightarrow 2HI(g)$$


5.1 The potential energy diagram for the reaction between hydrogen and iodine, is shown below:

- 5.1.1 Write down the term used for "unstable arrangement of atoms". (1)
- 5.1.2 Calculate the enthalpy change, ΔH , in kJ, for the forward reaction. (1)
- 5.1.3 Is the above reaction EXOTHERMIC or ENDOTHERMIC?
 Give a reason for the answer. (2)
- 5.1.4 Platinum can be used as a catalyst for this reaction. What effect would platinum have on the activation energy of this reaction?
 - Write down only INCREASE, DECREASE or REMAIN THE SAME. (1)

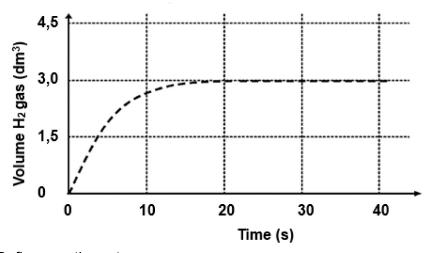
(3)

5.2 The graph below shows the distribution of the kinetic energy of reactant molecules in the gas mixture at 536 K.

- 5.2.1 Redraw the graph in your ANSWER SHEET and label it X. Add a second curve to the graph to show the distribution of the kinetic energy at 673 K and label it Y.
- 5.2.2 Compare the reaction rate at 673 K with that at 536 K. Write down only LOWER THAN, HIGHER THAN or EQUAL TO. (1) [9]

QUESTION 6 (Start on a new page.)

A group of learners perform a series of experiments to test the effect of certain factors on reaction rate when magnesium metal is added to EXCESS hydrochloric acid


$$Mg(s) + 2HC\ell(aq) \rightarrow 2MgC\ell_2(aq) + H_2(g)$$

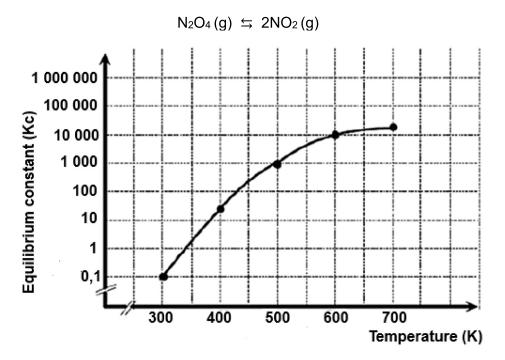
 $\Delta H < 0$

The table below summarises the reaction conditions and results of the experiment:

EXPERIMENT	STATE OF MAGNESIUM	MASS OF MAGNESIUM (g)	TEMPERATURE (°C)					
1	Ribbon	6,0	25					
2	Ribbon	6,0	15					
3	Fine powder	4,5	25					

The results of experiment **1** were collected and plotted on the graph below:

6.1 Define reaction rate.


- (2)
- 6.2 What volume of hydrogen gas was collected in experiment 1 after 40s?
- (1)
- 6.3 Calculate the average rate of reaction (in dm³·s⁻¹) for experiment **1** over first 20s.
- (3)
- 6.4 How will the rate of reaction be affected if a higher concentration of HC ℓ (aq) is used. Choose from INCREASES, DECREASE or REMAINS THE SAME. Explain the answer in terms of collision theory.
- (4)
- 6.5 Redraw the above graph of experiment **1** in the ANSWER SHEET and on the same system of axes sketch the graphs that will be obtained for experiment **2** and **3**. Clearly label the graphs for each experiment.
- (4) **[14]**

SA EXAM PAPERS

Grade 12

QUESTION 7 (Start on a new page.)

7.1 The graph below shows the effect of a temperature change on the value K_C for the following reaction taking place in a closed container:

- 7.1.1 What effect does an increase in temperature have on the amount of NO₂ formed? (1)
- 7.1.2 Which reaction was favoured due to an increase in temperature?
 Write only FORWARD or REVERSE (1)
- 7.1.3 State Le Chatelier's Principle. (2)
- 7.1.4 Using Le Chatelier's Principle, explain whether the forward reaction is EXOTHERMIC or ENDOTHERMIC (4)
- 7.1.5 Write down TWO factors, other than temperature, that can be used to increase the rate of the forward reaction at 500 K. (2)

NW/June 2025

7.2 Consider the hypothetical reaction that takes place between A2 and B in a closed container:

$$A_2(g) + 2B(g) \leftrightarrow 2AB(aq)$$
 $\Delta H > 0$ Colourless Dark red

X mol of gas A_2 and 2,0 mol of gas **B** are sealed in a 1,0 dm³ container. After a few minutes equilibrium is reached, and the contents of the container turns light red.

At equilibrium it is found that 0,40 mol of gas **AB** is present in the container. The value of K_C is 0,50.

7.2.1 Determine X, the quantity (in mol) of gas A_2 that was originally sealed in the container.

(8) [18]

NW/June 2025

(2)

(3)

(4)

QUESTION 8 (Start on a new page.)

Two groups of grade 12 learners were given separate experiments to conduct using a strong base (sodium hydroxide) and weak acids (oxalic acid and ethanoic acid) respectively.

8.1 **GROUP 1**

Learners were asked to determine the percentage purity of a sample of oxalic acid (H₂C₂O₄). To do this, they followed the procedure below:

- i. Prepared a standard solution of sodium hydroxide by diluting 50,0 cm³ of NaOH solution of concentration 0,63 mol.dm⁻³ to a volume of 1,00 dm³
- Prepared a solution of oxalic acid by dissolving 0,25 g of the ii. IMPURE SAMPLE in 75 cm³
- iii. Titrate the oxalic acid solution against the standard NaOH solution. The titration required 40,02 cm³ of the NaOH solution to neutralize ALL the oxalic acid solution in STEP (ii) above.

The equation for the reaction is:

$$2NaOH(aq) + H_2C_2O_4(aq) \rightarrow Na_2C_2O_4(aq) + 2H_2O(\ell)$$

- 8.1.1 Define a standard solution.
- 8.1.2 Calculate the concentration of the standard NaOH solution.
- 8.1.3 Calculate the percentage purity of the oxalic acid sample. (7)

8.2 **GROUP 2**

Learners were required to find the concentration and percentage of ethanoic acid in household vinegar. To do this they used the following procedure:

- i. Diluted vinegar sample by placing 25 cm³ household vinegar in a 250 cm³ volumetric flask and adding water up to the 250 cm³ mark.
- ii. Titrate the diluted vinegar sample with a solution of NaOH of concentration 0,2 mol.dm⁻³.
- 8.2.1 Calculate the pH of the NaOH solution.

NW/June 2025

In the titration, 15 cm³ of the diluted vinegar sample needed 30,25 cm³ of the sodium hydroxide solution for the endpoint to be reached.

NaOH(aq) + CH₃COOH(aq) \rightarrow CH₃COONa(aq) + H₂O(ℓ)

8.2.2 Define endpoint.

(2)

8.2.3 Calculate the concentration of diluted vinegar solution (in ethanoic acid).

(4)

8.2.4 If 1 cm³ vinegar has a mass of 1 g, calculate the percentage ethanoic acid by mass, present in the vinegar.

(5)

- 8.3 Sodium ethanoate, CH₃COONa, undergoes hydrolysis.
 - 8.3.1 Define "hydrolysis of salt".

(2)

- 8.3.2 How will the pH of the water be affected by the hydrolysis reaction? (choose from INCREASES, DECREASES or REMAINS THE SAME)
 - Write a balanced chemical equation that will explain the answer.

(3) [32]

TOTAL: 150

DATA FOR PHYSICAL SCIENCES GRADE 12 PAPER 2 (CHEMISTRY)

GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 12 VRAESTEL 2 (CHEMIE)

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE
Standard pressure Standaarddruk	pθ	1,013 x 10 ⁵ Pa
Molar gas volume at STP Molêre gasvolume by STD	V _m	22,4 dm ³ ·mol ⁻¹
Standard temperature Standaardtemperatuur	T°	273 K
Charge on electron Lading op elektron	е	-1,6 x 10 ⁻¹⁹ C
Avogadro's constant Avogadro-konstante	N _A	6,02 x 10 ²³ mol ⁻¹

TABLE 2: FORMULAE/TABEL 2: FORMULES

$n = \frac{m}{M}$	$n = \frac{N}{N_A}$								
$c = \frac{n}{V}$ or/of $c = \frac{m}{MV}$	$n = \frac{V}{V_m}$								
$\boxed{ \frac{c_a v_a}{c_b v_b} = \frac{n_a}{n_b} }$	$pH = -log[H_3O^{\dagger}]$								
$K_w = [H_3O^+][OH^-] = 1 \times 10^{-14} \text{ at/by } 298 \text{ K}$									
$E^{\theta}_{cell} = E^{\theta}_{cathode} - E^{\theta}_{anode} \ / E^{\theta}_{sel} = E^{\theta}_{katode} - E^{\theta}_{anode}$									
or/of $E_{cell}^\theta = E_{reduction}^\theta - E_{oxidation}^\theta / E_{sel}^\theta = E_{reduksie}^\theta - E_{oksidasie}^\theta$									
or/of $E_{cell}^\theta = E_{oxidisingagent}^\theta - E_{reducingagent}^\theta / E_{sel}^\theta = E_{oksideermiddel}^\theta - E_{reduseermiddel}^\theta$									

18 ∑∭	- F	10	Re	70	18	Ā	4	36	궃	84	54	×	131	98	唇			11	3	175	103	_	İ
3 4		6	O'#	19	17	3,0 Ce		35	8,s Q	80	53	- 2°2	127	82	ς,ς At			02	χ	173	102	2	
16 (XI)		l	3,5	16	16	S'2	32	34		62	52	2,1 P	128	84	2,0 Po			69	Ę	169	101	M	
£ S		7		14	15	2,1	3	33	o, As	75	51		122	83	و, ۱ ي	209		89	ш	167	100	E	
4 (5)		9		12	14		28	32	8, t Ge	73	20	S, Sn	119	85	$\overline{}$	207		29	욷	165	66	Ë	
13		ı	2,0 ت	7	13	1,5 Ae		31	9, t Ga	20	49	<u>ا</u> ۲'۱	115	81	8,1 7	204		99	^	16,	86	ຽ	,
12								30	°, Zn	65	48	S L'L	112	80	Нg	201		65	1	159	26	BK	
±								53	9,1 2	63,5	47	9, Ag	108	62	Au	197		64	ဗ	157	96	S	
10		mbol	Simbool			c mass	massa		8'l	29	46	2,2 P d	106	82	ᆂ	195		63	Щ	152	95	Am	
9 number	geta/		<u> </u>	_		Approximate relative atomic mass	Benaderde relatiewe atoommassa	27	8,1 S	59	45	2,2 B	103	11	<u>-</u>	192		62	Sm	150	94	P	I
8 9 Atomic number	Atoomgetal		֓֞֜֜֜֝֞֜֜֝֓֓֓֞֜֜֜֜֜֜֜֜֜֓֓֓֓֓֓֓֡֓֜֜֜֜֜֜֜֜֜֜	,50	—	relativ	elatiew	5 6	8,1 ه	26	44	2,2 2	101		ő	190		61	Pm		93	N O	<u>-</u>
-		ivity	witeit			oximate	derde r	25	۲ ٬ 5	55	43	ورا 5		75	器	186		09	Ž	144	92	-	238
9		ronegat	Elektronegatiwiteit			Appr	Bena	24	9,r Ω	52	45	8,1 M	96	74	>	184		29	ቯ	141	91	Pa	!
5	KEYISL	Electi	Elektr					23	۶,۱ >	51	41	욷	92	73	<u>Б</u>	181		28	ပီ	140	90	£	232
4								l	;⊢		40	1 Z	91	72	9'≀ ∓	179			_				
က								21	ε.τ S C	45	39	۲,۲ ۲,2	88	25	La	139	68	Ac					
3		ı	۰,۶ Be	6	12	۱,2 Mg		20	۰, Ca	40	38		88	26	e,o Ba	137		9,9 7,8	77				
-=	2,1 T -				1			19		33	37	8	98	22		133			1				
L		O			1	S	SΑ		EX	Δ	N	1 F	D /	\ F	E	R	S	<u>. U</u>					

Copyright reserved

Proudly South African