

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

NATIONAL SENIOR CERTIFICATE

GRADE 12

SEPTEMBER 2025

PHYSICAL SCIENCES P2: (CHEMISTRY)

MARKS: 150

TIME: 3 hours

This question paper consists of 20 pages, including 4 data sheets.

SA EXAM PAPERS

Proudly South African

INSTRUCTIONS AND INFORMATION

- 1. Write your name and surname in the appropriate space on the ANSWER BOOK.
- 2. This question paper consists of NINE questions. Answer ALL the questions in the ANSWER BOOK.
- 3. Start EACH question on a NEW page in the ANSWER BOOK.
- 4. Number the answers correctly according to the numbering system used in this question paper.
- 5. Leave ONE line between two sub questions, e.g. between QUESTION 2.1 and QUESTION 2.2.
- 6. You may use a non-programmable calculator.
- 7. You may use appropriate mathematical instruments.
- 8. Show ALL formulae and substitutions in ALL calculations.
- 9. Round off your FINAL numerical answers to a minimum of TWO decimal places.
- 10. Give brief motivations, discussions, etc. where required.
- 11. You are advised to use the attached DATA SHEETS.
- 12. Write neatly and legibly.

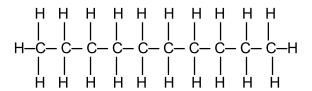
QUESTION 1: MULTIPLE-CHOICE QUESTIONS

Various options are provided as possible answers to the following questions. Choose the answer and write only the letter (A–D) next to the question numbers (1.1 to 1.10) in the ANSWER BOOK, for example 1.11 D.

- 1.1 Which ONE of the following homologous series can be described by the general formula $C_nH_{2n}O$?
 - A Alcohols
 - B Aldehydes
 - C Esters
 - D Carboxylic acids (2)
- 1.2 The empirical formula of methyl propanoate is ...
 - A C₄H₈O₂
 - B C₄H₈O
 - C C₂H₄O
 - $D CH_2O$ (2)
- 1.3 Consider the following compounds from the SAME HOMOLOGOUS SERIES with different boiling points.

Compounds	Boiling point (°C)
C ₄ H ₈ O	63
C ₄ H ₈ O	75

Which ONE of the following combinations is CORRECT regarding the homologous series to which compounds belong and type of isomers they form?


	Homologous series	us series Type of isomers					
Α	Ketones	Positional isomers					
В	Ketones	Chain isomers					
С	Aldehydes	Positional isomers					
D	Aldehydes	Chain isomers					

(2)

This Paper was downloaded from SAEXAMPAPERS PHYSICAL SCIENCES P2

(EC/SEPTEMBER 2025)

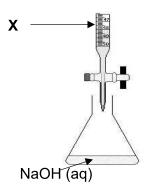
1.4 The organic molecule shown below undergoes thermal cracking.

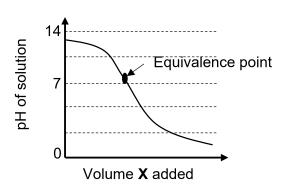
Which ONE of the following are possible products from the reaction?

A Hexane and butane

4

- B Octane, ethane and hydrogen gas
- C Pentane, propene and ethene
- D Propane, butane and ethene (2)
- 1.5 Which ONE of the following is TRUE regarding an EXOTHERMIC REACTION?
 - A No energy is absorbed or released.
 - B The amount of energy released is greater than the amount of energy absorbed.
 - C The amount of energy absorbed is greater than the amount of energy released.
 - D The amount of energy absorbed is equal to the amount of energy released. (2)
- 1.6 Consider the reaction below that reaches chemical equilibrium in a closed container.


$$3H_2(g) + N_2(g) \rightleftharpoons 2 NH_3(g) \Delta H < 0$$


Which ONE of the following changes will increase the yield of NH₃?

- A Addition of a catalyst
- B Increase temperature
- C Decrease in the volume of the container
- D Decrease in the concentration of N₂

(2)

1.7 The diagrams shows a titration set-up and titration curve obtained.

Consider the statements regarding substance **X**.

- I The K_a value for substance **X** is greater than 1.
- II The amount of **X** is equal the amount of NaOH at the equivalence point.
- III Substance **X** ionises in water to produce low concentration of H₃O⁺

Which of the above statement(s) is/are TRUE?

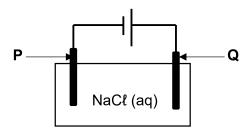
- A I and II only
- B II only
- C II and III only
- D I and III only (2)
- 1.8 The reaction represented by the balanced equation below reaches equilibrium in a closed container.

$$C\ell_2(g) + H_2O(\ell) \rightleftharpoons C\ell^-(aq) + C\ell O^-(aq) + 2 H^+(aq)$$
 $\Delta H < 0$

Which ONE of the following changes will favour the reverse reaction?

- A Addition of hydrogen (H₂)
- B Addition of potassium hydroxide (KOH)
- C Decrease the pH of the equilibrium mixture
- D Cool the equilibrium mixture (2)

(EC/SEPTEMBER 2025


1.9 The standard hydrogen half-cell ($H^+ \mid H_2 \mid Pt$) is connected to Mn | Mn²⁺ half-cell to form a galvanic cell.

Which ONE of the following combinations CORRECTLY identifies the oxidising agent and direction of electron flow?

	Oxidiaina agant	Direction of flow of electrons					
	Oxidising agent	From half-cell	To half-cell				
Α	Mn	$H^+ \mid H_2 \mid Pt$	Mn Mn ²⁺				
В	Mn ²⁺	Mn Mn ²⁺	$H^+ \mid H_2 \mid Pt$				
С	H ⁺	$H^+ \mid H_2 \mid Pt$	Mn Mn ²⁺				
D	H ⁺	Mn Mn ²⁺	H ⁺ H ₂ Pt				

(2)

1.10 The electrolytic cell below is used for the electrolysis of concentrated sodium chloride (NaCl).

Consider the statements regarding the electrolysis of concentrated sodium chloride (NaCl).

- I The pH of the electrolyte increases over time.
- II H_2O is oxidised at electrode **P**.
- III Chlorine gas (Cl_2) is produced at electrode **Q**.

Which of the above statement(s) is/are TRUE?

- A I and II only
- B III only
- C II and III only
- D I and III only

(2)

[20]

QUESTION 2 (Start on a NEW page.)

The table below shows organic molecules (A–F) from different homologous series.

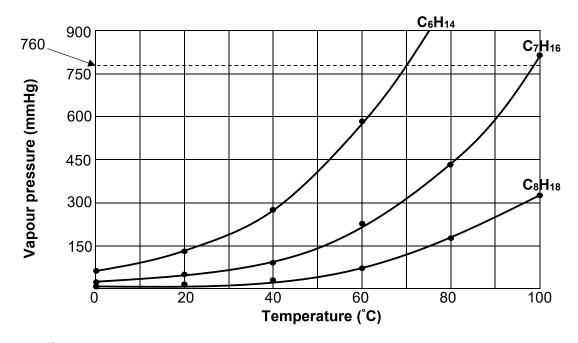
CH ₂ -	CH₃ CH CH₂ CH Cℓ CH₃	В	3,4-dimethylpentan-2-ol
C CH₃Cŀ	H(CH₃)CCCH₃	D	H H H O
E 3-meth	nylbutanone	F	C _x H _Y

- 2.1 Define homologous series. (2)
- 2.2 Write down the LETTER that represents EACH of the following:
 - 2.2.1 Unsaturated hydrocarbon (1)
 - 2.2.2 A compound with a carbonyl group bonded to two saturated carbon atoms (1)
 - 2.2.3 Compounds that are functional isomers (2)
- 2.3 Write down the IUPAC name of:
 - 2.3.1 Compound **A** (3)
 - 2.3.2 Compound **C** (2)
- 2.4 Draw the STRUCTURAL FORMULA of compound **B**. (2)
- 2.5 Compound **D** has a positional isomer.
 - 2.5.1 Define the term *positional isomer.* (2)
 - 2.5.2 Draw the positional isomer of compound \mathbf{D} . (2)

This Paper was downloaded from SAEXAMPAPERS (EC/SEPTEMBER 2025)

2.6 Compound F (C_xH_Y) is an alkane that undergoes complete combustion with excess oxygen as shown below.

$$C_xH_Y + 8 O_2 \rightarrow P CO_2 + 6 H_2O$$


- 2.6.1 Determine the value **P**. (2)
- 2.6.2 Write down the CONDENSED STRUCTURAL FORMULA of compound F. (2)[21]

8

QUESTION 3 (Start on a NEW page.)

The vapour pressure against temperature curves are drawn for THREE STRAIGHT CHAIN ALKANES. The vapour pressure are measured in mmHg. The atmospheric pressure is 760 mmHg.

GRAPH OF VAPOUR PRESSURE VERSUS TEMPERATURE

3.1 Define vapour pressure. (2)

3.2 At what phase are the alkanes at room temperature?

Write down only GAS, LIQUID or SOLID.

Give a reason for the answer.

(2)

- 3.3 How will the boiling points change if the atmospheric pressure decreases?
 - Choose from INCREASES, DECREASES or REMAIN THE SAME.

(1)

3.4 What can be concluded from the curve regarding the relationship between intermolecular forces and vapour pressure?

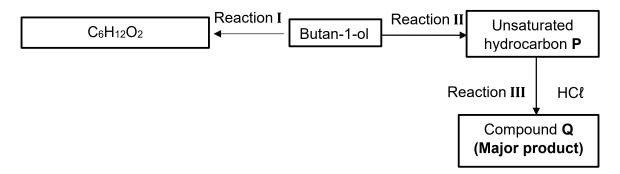
(2)

3.5 The table below shows the boiling point of propan-1-ol and propanoic acid.

	COMPOUND	BOILING POINT (°C)
Α	Propan-1-ol	97
В	Propanoic acid	141

3.5.1 Define the term boiling point. (2)

3.5.2 Fully explain the difference in the boiling points. (4)


[13]

(EC/SEPTEMBER 2025

QUESTION 4 (Start on a NEW page.)

Consider the flow diagram below:

4.1 Consider reaction I.

Write down the:

- 4.1.1 Name of reaction (1)
- 4.1.2 STRUCTURAL FORMULA of the carboxylic acid need (2)
- 4.2 Consider reaction II.

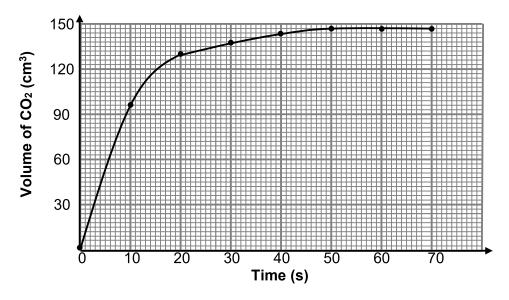
Write down the:

- 4.2.1 NAME or FORMULA of the inorganic reagent needed (1)
- 4.2.2 IUPAC name of unsaturated hydrocarbon **P** (2)
- 4.3 Consider reaction III.
 - 4.3.1 Write down the name of the type of addition reaction. (1)
 - 4.3.2 Is compound **Q** a PRIMARY, SECONDARY or TERTIARY HALOALKANE? Give a reason for the answer. (2)
- 4.4 Compound **Q** is mixed with concentrated sodium hydroxide (NaOH) and strongly heated.

Write down the:

- 4.4.1 Type of reaction that occurred (1)
- 4.4.2 Balanced equation by using STRUCTURAL FORMULAE for the organic compounds and write the structural formula for the major product only in the reaction.
 (6)

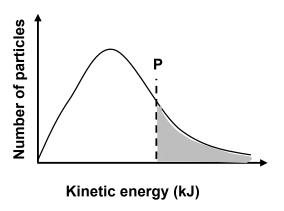
(2)


QUESTION 5 (Start on a NEW page.)

5.1 Define the term *reaction rate*.

A group of learners want to determine the percentage purity of a sample that contains calcium carbonate (CaCO₃). They react 2,5 g sample of impure calcium carbonate (CaCO₃) with EXCESS dilute hydrochloric acid (HC ℓ) according to the balanced equation.

$$CaCO_3(s) + 2 HCl(aq) \longrightarrow CaCl_2(aq) + H_2O(l) + CO_2(g)$$


They measure the volume of carbon dioxide gas produced over time and obtained the graph below.

- 5.2 How will the learners know that the reaction has reached completion? (1)
- 5.3 Calculate the:
 - 5.3.1 Average rate at which CO_2 is produced in $cm^3 \cdot s^{-1}$ (3)
 - 5.3.2 Percentage purity of CaCO₃ if the molar volume of CO₂ is 24 000 cm³·mol⁻¹ at 25 °C (5)
- 5.4 The experiment is repeated by using powdered sample of calcium carbonate instead of chunked sample of calcium carbonate.
 - 5.4.1 Will the reaction rate INCREASE, DECREASE or REMAIN THE SAME? (1)
 - 5.4.2 Explain the answer to QUESTION 5.4.1 by referring to the collision theory. (3)

(EC/SEPTEMBER 2025)

5.5 The graph below represents the Maxwell-Boltzmann distribution curve for CO_2 (g) at 25 $^{\circ}C$.

5.5.1 What does the shaded area to the right of line **P** represents? (1)

5.5.2 How will an increase in temperature affect the shaded area?

Choose from INCREASES, DECREASES or NO EFFECT.

Give a reason for the answer. (2) [18]

13

QUESTION 6 (Start on a NEW page.)

When copper(II)chloride is dissolved in water the following chemical equilibrium equation is obtained. This can be used to demonstrate Le Chatelier's principle.

$$Cu(H_2O)_6^{2+}(aq) + 4 C\ell^-(aq) \rightleftharpoons CuC\ell_4^{2-}(aq) + 6 H_2O(\ell) \Delta H > 0$$
Blue Green

6.1 State Le Chatelier's principle.

(2)

6.2 State whether the solution will become **BLUE** or **GREEN** when the following changes are made.

The colour of the equilibrium mixture is **BLUE**.

6.2.1 The mixture is cooled.

(1)

6.2.2 Addition of saturated sodium chloride solution.

(1)

6.3 Fully explain the answer to QUESTION 6.2.2 by referring to Le Chatelier's principle.

(3)

6.4 Calcium carbonate is allowed to decompose at 1 000 °C in a sealed container according to the balanced chemical equation below.

$$CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$$
 $\Delta H > 0$

Initially 0,24 mol of calcium carbonate is placed in a 2 dm³ container and heated. An equilibrium is established at 1 000 °C. At this temperature the equilibrium constant is 0,0385.

6.4.1 Will the Kc value INCREASE, DECREASE or REMAIN THE SAME if the temperature at which calcium carbonate decomposes is INCREASED?

Fully explain the answer. (3)

6.4.2 Calculate the mass of unreacted calcium carbonate that will remain in the container when the system reaches equilibrium at 1 000 °C.

(7) **[17]**

(EC/SEPTEMBER 2025)

QUESTION 7 (Start on a NEW page.)

7.1 Consider the reactions below and answer questions that follow.

REACTION	CHEMICAL EQUATIONS							
Α	$HSO_4^- + H_2O \rightarrow SO_4^{2-} + H_3O^+$							
В	KOH + CH₃COOH → CH₃COOK + H₂O							

7.1.1 Define a base in term of the *Arrhenius theory*.

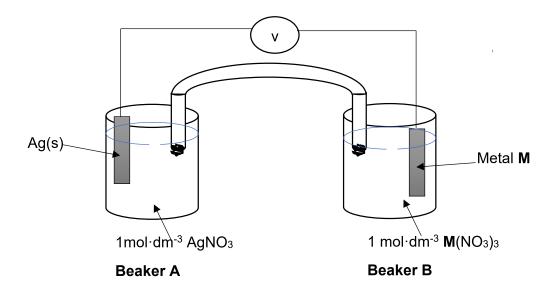
(2)

From the reactions above:

- 7.1.2 Which ONE of the reactions (**A** or **B**) represents the Arrhenius model? (1)
- 7.1.3 Write down a conjugate base of HSO₄⁻ (1)
- 7.2 Consider reaction B.
 - 7.2.1 Give a reason why CH₃COOH can be regarded as a weak acid. (2)
 - 7.2.2 Will CH₃COOK be ACIDIC, NEUTRAL or ALKALINE solution in water? (1)
 - 7.2.3 Explain the answer in QUESTION 7.2.3 by using the relevant equation. (3)
- 7.3 During a titration, 12,5 cm³ of sodium hydroxide (NaOH) solution with a concentration of 0,2 mol·dm⁻³ neutralises 25 cm³ of sulphuric acid (H₂SO₄) solution, according to the following balanced chemical equation:

2 NaOH (aq) +
$$H_2SO_4$$
 (aq) \rightarrow Na₂SO₄ (aq) + 2 $H_2O(l)$

- 7.3.1 Write down the name of a suitable indicator for this neutralisation reaction. (1)
- 7.3.2 Calculate the pH of the H_2SO_4 solution. (7)


[18]

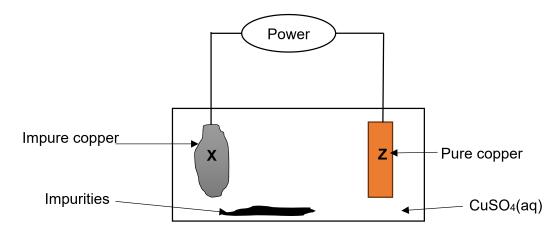
(2)

(3)

QUESTION 8 (Start on a NEW page.)

8.1 A galvanic cell is set up under standard conditions using unknown metal **M** and silver as an electrode. The standard electrode potential for the unknown metal **M** is less than 0 V.

- 8.1.1 Write down the energy conversion in this cell.
- 8.1.2 Which electrode is the anode in the cell (Ag or Metal **M**)?


 Explain the answer.
- 8.2 The initial potential difference for this cell is 1,54 V.
 - 8.2.1 Identify metal **M** by calculation. (5)
 - 8.2.2 Write down the cell notation for the cell. (3)
- 8.3 How will the initial reading on the voltmeter change when the following changes are made to the cell above?

Write down only INCREASES, DECREASES or REMAINS THE SAME

- 8.3.1 Surface area of the Ag electrode is increased. (1)
- 8.3.2 The concentration of AgNO $_3$ solution is increased to 2 mol·dm $^{-3}$. (1) [15]

QUESTION 9 (Start on a NEW page.)

The electrolytic cell, represented in the diagram below, is set up to purify copper which contains zinc and silver impurities.

- 9.1 Define the term *electrolyte*. (2)
- 9.2 Is this reaction ENDOTHERMIC or EXORTHEMIC? (1)
- 9.3 Which of the electrodes (**X** or **Z**) is connected to the positive terminal of the battery? (1)
- 9.4 Write down the half reaction that takes place at electrode **Z**. (2)
- 9.5 During the electrolysis it is observed that zinc is also oxidised but not silver.
 - Give a reason for this observation by referring to the relative strengths of the reducing agents. (1)
- 9.6 An unknown solution (MC l_2) was electrolysed using copper electrodes. After some time 1,806 x 10²² electrons were gained at the cathode while the cathode gained 0,6 g.
 - Determine, by calculations, the formula of an unknown solution. (5) [12]

TOTAL: 150

NATIONAL SENIOR CERTIFICATE NASIONALE SENIOR SERTIFIKAAT

DATA FOR PHYSICAL SCIENCES GRADE 12 PAPER 2 (CHEMISTRY)

GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 12 VRAESTEL 2 (CHEMIE)

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/ <i>WAARDE</i>
Standard pressure Standaarddruk	$p^{\scriptscriptstyle{\theta}}$	1,013 x 10 ⁵ Pa
Molar gas volume at STP Molêre gasvolume teen STD	V _m	22,4 dm ³ ·mol ⁻¹
Standard temperature Standaardtemperatuur	Т	273 K
Charge on electron Lading op elektron	е	-1,6 x 10 ⁻¹⁹ C
Avogadro's constant Avogadro se konstante	Na	6,02 x 10 ²³ mol ⁻¹

TABLE 2: FORMULAE/TABEL 2: FORMULES

$n = \frac{m}{M}$ or/of	$c = \frac{n}{V}$ or/of $c = \frac{m}{MV}$	pH= -log[H ₃ O ⁺]
$n = \frac{N}{N_A}$ or/of	$\frac{c_a V_a}{c_b V_b} = \frac{n_a}{n_b}$	$K_W = [H_3O^+][OH^-] = 1x10^{-14} \text{ at /by } 298K$
$n = \frac{V}{V_m}$		

$$\mathsf{E}^{\theta}{}_{\text{cell}} = \mathsf{E}^{\theta}{}_{\text{cathode}} - \mathsf{E}^{\theta}{}_{\text{anode}} \ / \ \mathsf{E}^{\theta}{}_{\text{sel}} = \mathsf{E}^{\theta}{}_{\text{katode}} - \mathsf{E}^{\theta}{}_{\text{anode}}$$

$$E^{\theta}_{cell} = E^{\theta}_{reduction} - E^{\theta}_{oxidation} \ / \ E^{\theta}_{sel} = E^{\theta}_{reduksie} - E^{\theta}_{oksidasie}$$

$$E^{\theta}_{cell} = E^{\theta}_{oxidising \ agent} - E^{\theta}_{reducing \ agent} / \ E^{\theta}_{sel} = E^{\theta}_{oksideermiddel} - E^{\theta}_{reduseermiddel}$$

$$q = I\Delta t$$
 $n = \frac{Q}{e}$ or/of $n = \frac{Q}{q_e}$

			A. C.		SA EXAM PAPERS	Т	his P	ар	er v	vas (dow	nlo	ad	ed 1	from	SAE	XΑ	MF	PAF	ER	S		
3ER 2025)		18 (VIII)	2 He	10	Ne 20	18	Ā	40	36	K r	54	Xe	131	98	Rn			71	Γn	175	103	۲	
(EC/SEPTEMBER 2025)		17 (<u>M</u>)			0,4 굔 &		0.ε S ქ	35,5		.2 P		2.5 —			2.5 A			02	Υb	173	102	8	
(E		16 <u>(Š</u>			3.8 O &		2,5 လ (32		გ გ	52	۲,2 ٦	_		0,2 G			69	Ę	169	101	Βd	
	7E	3 (5)			0.6 s 4	15	۲,2 ۳ ۶	31		ر. 75		و. ۲ م			و. ۲ <u>¤</u> چ	24		89	山	167	100	Æ	
	LEMEN	4 €			2.5 ೧ 5		8.1 윤 8	87		 5 73		8.1 S			8.1 dg 5	2		29	우	165	66	Es	
	VAN E	13		2	2.c w		1.5 A 2	/7		Ga Z	49	7.ſ ⊏	-		8.↑ 5 ⊊	104		99	٥	163	86	ರ	
	DIE PERIODIEKE TABEL VAN ELEMENTE	12								 2n 55	48	7.1 S		08	Hg 2	2		9	Τp	159	26	ᄶ	
	ODIEKE		Simbool	logi		: mass/	massa			 		6. r	,		Au 197			64	рg	157	96	CB	
CES P2	PERI	10 er	Sim	Symbol		atomic	atoom		: 58 8	۱. ۲ ق		2,2	,	82	Pt 195	2		63	Ш	152	96	Am	
SCIEN	3: DIE	<i>mgetal</i> 9 ¦ numbe	62 5	2		relative	: Iatiewe			်) လူ ရ	45	s.s 돈	103	22	- 6	12		62	Sm	150	94	Pu	
HYSICAL SCIENCES P2	TABEL 3:	Atoomgetal 8 9 Atomic number ↓	6'1			Approximate relative atomic mass/	aderde re		8 1 26	. r e a a		2.2 S		92	Os 190	2		61	Pm		93	g Q	
PH	TABLE 3: THE PERIODIC TABLE OF ELEMENTS/7	7 EL	Elektronegatiwiteit	gativity		Appl	Ben			. Mn 55		و. ۲ ج	•	75	Re 186	2		09	Š	144	92)28	420
	F ELEN	5 6 KEY/ S <i>LEUTEI</i>	ektroneg	Electronegativity						, ト ? ぴ		8,1 ≅		74	≥ 2/2	5		69	P	141	91	Ра	
	ABLE 0	5 KEY/	ii	Ш						.) > <u>?</u>	4	Q N	92	73	Та 184			28	Se	140	06	Th	707
	DIC T	4							i 53 2	. r = &		4,1 Z	91		۵,۱ ∓ ړ	-			_				
	PERIO	ო								, r SC A5		≻ 2'ו		22	La 130	89	\ <	ر (
	표	<u>)</u> 5		4	Be 0	12	Mg	74		s 4		က်		99	Ba 137	88	0	226	077				
	Е			9	3'l		۲'۱ ۳.			<u>' ا</u>	_	0'l			6'0 "° °) .	6' ·						
18	TABL	- €	1,2 - I -	3			6,0 S	73		≤ 8 S 0 A	37 E	BX	98 A	2 55	7,0 5	A	ը՝ 2՝	Œ	R	S			

TABLE 4A: STANDARD REDUCTION POTENTIALS TABEL 4A: STANDAARD REDUKSIEPOTENSIALE

Half-reactions/Halfreaksies \mathbb{P}^{θ} (A)								
	IIS/Hall	reaksies	Ε ^θ (V)					
F ₂ (g) + 2e ⁻	=	2F-	+ 2,87					
Co ³⁺ + e ⁻	=	Co ²⁺	+ 1,81					
$H_2O_2 + 2H^+ + 2e^-$	=	2H₂O	+1,77					
MnO $_{4}^{-}$ + 8H $^{+}$ + 5e $^{-}$	=	$Mn^{2+} + 4H_2O$	+ 1,51					
Cl ₂ (g) + 2e ⁻	=	2Cℓ ⁻	+ 1,36					
Cr ₂ O ₇ ²⁻ + 14H ⁺ + 6e ⁻	⇌	2Cr ³⁺ + 7H ₂ O	+ 1,33					
$O_2(g) + 4H^+ + 4e^-$	=	2H ₂ O	+ 1,23					
MnO ₂ + 4H ⁺ + 2e ⁻	=	$Mn^{2+} + 2H_2O$	+ 1,23					
Pt ²⁺ + 2e ⁻	=	Pt	+ 1,20					
$Br_2(\ell) + 2e^-$	=	2Br ⁻	+ 1,07					
NO $_{3}^{-}$ + 4H $^{+}$ + 3e $^{-}$	=	$NO(g) + 2H_2O$	+ 0,96					
Hg ²⁺ + 2e ⁻	=	$Hg(\ell)$	+ 0,85					
Ag+ + e-	=	Ag	+ 0,80					
NO $_3^-$ + 2H+ + e-	=	$NO_2(g) + H_2O$	+ 0,80					
Fe ³⁺ + e ⁻	=	Fe ²⁺	+ 0,77					
O ₂ (g) + 2H ⁺ + 2e ⁻	=	H_2O_2	+ 0,68					
l ₂ + 2e ⁻	=	2I ⁻	+ 0,54					
Cu+ + e-	=	Cu	+ 0,52					
SO ₂ + 4H ⁺ + 4e ⁻	=	S + 2H ₂ O	+ 0,45					
2H ₂ O + O ₂ + 4e⁻	=	40H-	+ 0,40					
Cu ²⁺ + 2e ⁻	=	Cu	+ 0,34					
SO ₄ ²⁻ + 4H ⁺ + 2e ⁻	=	$SO_2(g) + 2H_2O$	+ 0,17					
Cu ²⁺ + e ⁻	\Rightarrow	Cu ⁺	+ 0,16					
Sn ⁴⁺ + 2e ⁻	=	Sn ²⁺	+ 0,15					
S + 2H+ + 2e-	=	$H_2S(g)$	+ 0,14					
2H⁺ + 2e⁻	+	H ₂ (g)	0,00					
Fe ³⁺ + 3e ⁻	=	Fe	- 0,06					
Pb ²⁺ + 2e ⁻	\Rightarrow	Pb	- 0,13					
Sn ²⁺ + 2e ⁻	=	Sn	- 0,14					
Ni ²⁺ + 2e ⁻	=	Ni	- 0,27					
Co ²⁺ + 2e ⁻	=	Co	- 0,28					
Cd ²⁺ + 2e ⁻	=	Cd	- 0,40					
Cr ³⁺ + e ⁻	=	Cr ²⁺	- 0,41					
Fe ²⁺ + 2e ⁻	=	Fe	- 0,44					
Cr ³⁺ + 3e ⁻	=	Cr	- 0,74					
Zn ²⁺ + 2e ⁻	=	Zn	- 0,76					
2H ₂ O + 2e ⁻	=	$H_2(g) + 2OH^-$	- 0,83					
Cr ²⁺ + 2e ⁻	=	Cr	- 0,91					
Mn ²⁺ + 2e ⁻	=	Mn	– 1,18					
$A\ell^{3+} + 3e^{-}$	=	Al	- 1,66					
Mg ²⁺ + 2e ⁻	=	Mg	- 2,36					
Na ⁺ + e ⁻	=	Na	- 2,71					
Ca ²⁺ + 2e ⁻	=	Ca	- 2,87					
Sr ²⁺ + 2e ⁻	=	Sr	- 2,89					
Ba ²⁺ + 2e ⁻	=	Ва	- 2,90					
Cs ⁺ + e ⁻	=	Cs	- 2,92					
K+ + e- Li*/+ e-	= ==	K	- 2,93 - 3 .0 5					

Increasing reducing ability/Toenemende reduserende vermoë

Increasing oxidising ability/Toenemende oksiderende vermoë

Copyright reserved

Proudly South African

Please turn over

TABLE 4B: STANDARD REDUCTION POTENTIALS TABEL 4B: STANDAARD REDUKSIEPOTENSIALE

TABEL 4B: STANDAARD REDUKSIEPOTENSIALE									
Half-reactions/Halfre	Ε ^θ (V)								
Li ⁺ + e ⁻	=	Li	- 3,05						
K ⁺ + e ⁻	=	K	- 2,93						
Cs ⁺ + e ⁻	=	Cs	- 2,92						
Ba ²⁺ + 2e ⁻	=	Ва	- 2,90						
Sr ²⁺ + 2e ⁻	\rightleftharpoons	Sr	– 2,89						
Ca ²⁺ + 2e ⁻	=	Ca	– 2,87						
Na⁺ + e⁻	=	Na	– 2,71						
Mg ²⁺ + 2e ⁻	\Rightarrow	Mg	- 2,36						
$A\ell^{3+} + 3e^{-}$	=	Αℓ	- 1,66						
Mn ²⁺ + 2e ⁻	=	Mn	- 1,18						
Cr ²⁺ + 2e ⁻	=	Cr	- 0,91						
2H ₂ O + 2e ⁻	=	H ₂ (g) + 2OH ⁻	- 0,83						
Zn ²⁺ + 2e ⁻	=	Zn	- 0,76						
Cr ³⁺ + 3e ⁻	=	Cr	- 0,74						
Fe ²⁺ + 2e ⁻	=	Fe	- 0,44						
Cr ³⁺ + e ⁻	=	Cr ²⁺	- 0,41						
Cd ²⁺ + 2e ⁻	=	Cd	- 0,40						
Co ²⁺ + 2e ⁻	=	Co	- 0,28						
Ni ²⁺ + 2e ⁻	=	Ni	- 0,27						
Sn ²⁺ + 2e ⁻	=	Sn	- 0,14						
Pb ²⁺ + 2e ⁻	=	Pb	- 0,13						
Fe ³⁺ + 3e ⁻	=	Fe	- 0,06						
2H⁺ + 2e⁻	+	H₂(g)	0,00						
S + 2H ⁺ + 2e ⁻	=	$H_2S(g)$	+ 0,14						
Sn ⁴⁺ + 2e ⁻	\Rightarrow	Sn ²⁺	+ 0,15						
Cu ²⁺ + e ⁻	=	Cu⁺	+ 0,16						
SO ₄ ²⁻ + 4H ⁺ + 2e ⁻	=	$SO_2(g) + 2H_2O$	+ 0,17						
Cu ²⁺ + 2e ⁻	\rightleftharpoons	Cu	+ 0,34						
2H ₂ O + O ₂ + 4e ⁻	=	4OH⁻	+ 0,40						
SO ₂ + 4H ⁺ + 4e ⁻	\rightleftharpoons	S + 2H ₂ O	+ 0,45						
Cu⁺ + e⁻	=	Cu	+ 0,52						
l ₂ + 2e ⁻	=	2l ⁻	+ 0,54						
$O_2(g) + 2H^+ + 2e^-$	=	H_2O_2	+ 0,68						
Fe ³⁺ + e ⁻	=	Fe ²⁺	+ 0,77						
NO $_{3}^{-}$ + 2H $^{+}$ + e $^{-}$	=	$NO_2(g) + H_2O$	+ 0,80						
Ag+ + e-	=	Ag	+ 0,80						
Hg ²⁺ + 2e ⁻	\rightleftharpoons	Hg(ℓ)	+ 0,85						
NO $\frac{-}{3}$ + 4H $^{+}$ + 3e $^{-}$	=	NO(g) + 2H ₂ O	+ 0,96						
$Br_2(\ell) + 2e^-$	\rightleftharpoons	2Br⁻	+ 1,07						
Pt ²⁺ + 2 e ⁻	=	Pt	+ 1,20						
$MnO_2 + 4H^+ + 2e^-$	\Rightarrow	$Mn^{2+} + 2H_2O$	+ 1,23						
$O_2(g) + 4H^+ + 4e^-$	\Rightarrow	2H ₂ O	+ 1,23						
Cr ₂ O ₇ ²⁻ + 14H ⁺ + 6e ⁻	=	2Cr ³⁺ + 7H ₂ O	+ 1,33						
Cl ₂ (g) + 2e ⁻	=	2Cl-	+ 1,36						
MnO _ + 8H+ + 5e-	=	Mn ²⁺ + 4H ₂ O	+ 1,51						
H ₂ O ₂ + 2H ⁺ +2 e ⁻	=	2H ₂ O	+1,77						
Co ³⁺ + e ⁻	\rightleftharpoons	Co ²⁺	+ 1,81						
$F_2(g) + 2e^-$	=	2F-	+ 2,87						

Increasing reducing ability/Toenemende reduserende vermoë

SA EXAM PAPERS

Increasing oxidising ability/Toenemende oksiderende vermoë