

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

This Paper was downloaded from SAEXAMPAPERS

NATIONAL SENIOR CERTIFICATE

GRADE 12

PHYSICAL SCIENCES P2 (CHEMISTRY) PREPARATORY EXAMINATION **SEPTEMBER 2025**

MARKS : 150

Copyright reserved

TIME : 3 Hours

This question paper consists of 15 pages and 4 data sheets.

INSTRUCTIONS AND INFORMATION

- Write your name in the appropriate spaces on the ANSWER BOOK.
- This question paper consists of NINE questions. Answer ALL the questions in the ANSWER BOOK.
- Start EACH question on a NEW page in the ANSWER BOOK.
- 4. Number the answers correctly according to the numbering system used in this question paper.
- 5. Leave ONE line between two sub-questions, for example between QUESTION 2.1 and 2.2.
- 6. You may use a non-programmable calculator.
- You may use appropriate mathematical instruments.
- 8. Show ALL formulae and substitutions in ALL calculations.
- 9. Round off your final numerical answers to a minimum of TWO decimal places.
- 10. Give brief motivations, discussions et cetera where required.
- You are advised to use the attached DATA SHEETS.
- Write neatly and legibly.

Physical Sciences/P2

September 2025 Preparatory Examination

QUESTION 1: MULTIPLE-CHOICE QUESTIONS

Four options are provided as possible answers to the following questions. Each question has only ONE correct answer. Choose the answer and write only the letter (A-D) next to the question number (1.1-1.10) in the ANSWER BOOK, for example 1.11 E.

Which ONE of the following compounds represents an ester? 1.1

(2)

- Which ONE of the following compounds has the LOWEST vapour pressure? 1.2
 - A Butanal.
 - В Pentane.
 - C Butan - 1 - ol.
 - (2) D Propanoic acid.

D

1.3 Consider the reaction represented by the equation below:

C₅H₁₁Br + NaOH → C₅H₁₂O + NaBr

This reaction is an example of . . .

- A Hydration.
- В Dehydration.
- C Substitution.
- D Hydrogenation.

(2)

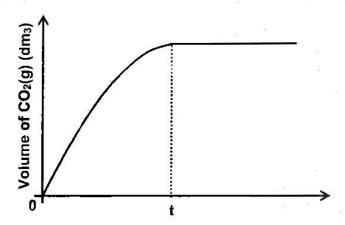
Physical Sciences/P2

September 2025 Preparatory Examination

1.4 Consider the reaction represented by the balanced equation below:

$$2 SO_3(g) \rightleftharpoons 2 SO_2(g) + O_2(g) \Delta H = 198 kJ.mol^{-1}$$

Which ONE of the following is TRUE for the reaction? When 2 moles of SO₂(g) are formed . . .


- A 198 kJ of energy is absorbed.
- B 198 kJ of energy is released.
- C 396 kJ of energy is absorbed.
- D 396 kJ of energy is released.

(2)

1.5 Calcium carbonate reacts with excess hydrochloric acid according to the following chemical equation:

$$CaCO_3(s) + 2HC\ell(aq) \rightarrow CaC\ell_2(aq) + CO_2(g) + H_2O(\ell)$$

In an investigation, VARYING MASSES of calcium carbonate are added to EQUAL AMOUNTS of HCl and the gas released is collected. The following graph is produced from the results of one experiment:

Which ONE of the following conclusions about the reaction is correct at time, **t** indicated in the graph?

- A HCl is used up in the reaction.
- B CaCO₃ is in excess.
- C CaCO₃ is used up in the reaction.
- D Both, HCℓ and CaCO₃ are in excess.

(2)

This Paper was downloaded from SAEXAMPAPERS

September 2025 Preparatory Examination

- 1.6 Which one of the following statements below regarding a reversible reaction taking place in a closed container is **true**?
 - A When chemical equilibrium is reached the value of K_c is zero.
 - B Chemical equilibrium is reached when the forward reaction stops.
 - C Chemical equilibrium is reached when the concentrations of the product and reactants remain constant.
 - D Chemical equilibrium is reached when the concentration of the products is equal to the concentrations of the reactants.
- 1.7 Water is added to a 0,01 mol·dm⁻³ solution of nitric acid. Which one of the following describes the change in concentration of hydronium ions and pH in this solution as water is added?

	[H₃O ⁺]	рН
Α	Remains the same	Remains the same
В	Increases	Decreases
С	Increases	Increases
D	Decreases	Increases

1.8 Bromophenol blue is an acid-base indicator that has a colour change from yellow to blue between pH 3,0 and 4,6. A NaOH solution is titrated with an acetic (ethanoic) acid solution, using bromophenol blue indicator.

Which one of the following statements about this titration is true?

- A The end point and the equivalence point occur at the same time.
- B The end point occurs after the equivalence point.
 - C The end point occurs before the equivalence point.
 - D The indicator will be yellow at the equivalence point of the titration. (2)

SA EXAM PAPERS

Proudly South African

(2)

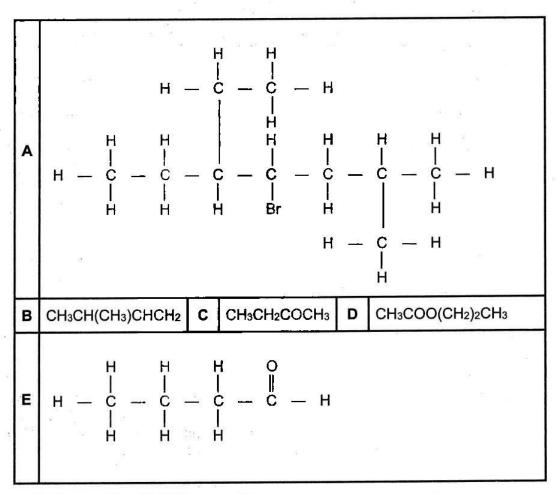
This Paper was downloaded from SAEXAMPAPERS

September 2025 Preparatory Examination

1.9 The emf of a galvanic cell is found to be 1,2 V under standard conditions. The following half-reactions and standard electrode potentials are provided:

Half reaction	E ^Ø value (V)		
J ⁺ + e ⁻	-1,8		
$Q^{2+} + 2e^- \rightleftharpoons Q$	0,3		
L+ + e- ⇌ L	-0.,9		
M ²⁺ + 2 e ⁻ ⇌ M	-0,3		

Which of the substances J, K, L and M will act as the anode and cathode respectively?


- A Jand L
- B J and M
- C L and M
- D L and Q (2)
- 1.10 When copper is extracted from its ores, the impure copper, which contains small amounts of silver and gold, is purified by electrolysis. During this process, a "sludge" forms beneath the anode which is found to contain silver and traces of gold. Why is silver found in this sludge?
 - A Silver is a weaker oxidising agent than copper.
 - B Silver is an inert metal, so will not dissolve during the electrolysis.
 - C Silver reacts with the electrolyte to form an insoluble salt.
 - D Silver is more dense than copper and falls off the cathode. (2) [20]

This Paper was downloaded from SAEXAMPAPERS September 2025 Preparatory Examination

QUESTION 2 (Start on a new page.)

The letters A to E in the table below represent five organic compounds.

2.1 Write down the IUPAC name of the compound:

- (1) Write down general formula for compound D. 2.2
- Write down the letter that represents the compound that: 2.3

Proudly South African

This Paper was downloaded from SAEXAMPAPERS September 2025 Preparatory Examination

- 2.4 Compound D has functional isomers.
 - 2.4.1 Define the term functional isomers. (2)
 - 2.4.2 Write down the empirical formula of the functional isomer of compound **D**. (2)
 - 2.4.3 Write down the IUPAC name of the functional isomer of compound **D**. (2)

[14]

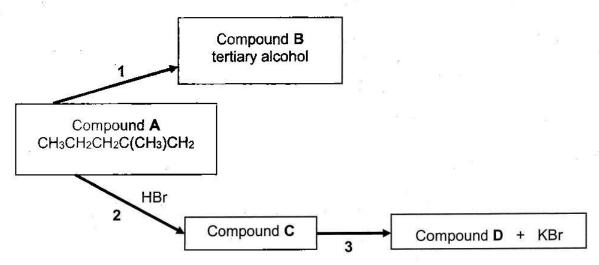
QUESTION 3 (Start on a new page.)

Organic compounds X, Y and Z are used to investigate one of the factors that influences a *physical property* of organic compounds. The table below shows the results obtained.

Organic Compound	BOILING POINT (°C)	
W	138	
X	129	
Y	114	

Compounds W, X and Y are *CHAIN ISOMERS* with a molecular formula of C₅H₁₂O. The FUNCTIONAL GROUP FOR EACH COMPOUND IS POSITIONED on the first carbon atom for the purposes of this investigation.

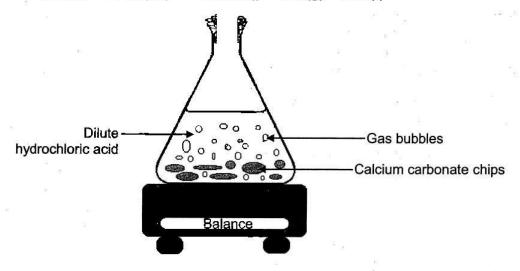
3.1	Define bo	piling point.	39 s			(2)
3.2	Write dov	vn the:	622		v 8	
	3.2.1	Reason why the functional group for on the first carbon atom for the purpo				(1)
	3.2.2	Name of the weakest intermolecula W.	r force be	tween mol	ecules of	(1)
	3.2.3	Name of the strongest intermoleculary.	ar force be	etween mol	ecules of	(1)
3.4	Which co reason fo	mpound W, X or Y will have the high r the answer.	nest vapoi	ur pressure	? Give a	(2)
3.5		compounds W and X have the same ints. Fully explain the difference in boil			different	(4)
3.6	Draw the	structural formula for compound Y.				(3)
3.7		oiling point of 2,2 – dimethylpropane b R THAN the boiling point of compound				(4)


[18]

This Paper was downloaded from SAEXAMPAPERS September 2025 Preparatory Examination

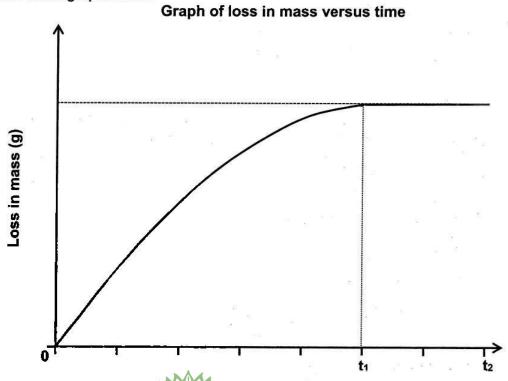
QUESTION 4 (Start on a new page.)

In the flow diagram below, 1, 2 and 3 represent organic reactions. A, B, C and D represent organic compounds.


Compound A produces compounds B and C during reactions 1 and 2 respectively. ONLY, ONE OF THE COMPOUNDS, EITHER B OR C IS A MAJOR PRODUCT.

	,			
4.1		Write dow	n a SINGLE term for the type of reaction represented by 1 and 2.	(1)
4.2		Define the	e term tertiary alcohol.	(2)
4.3		Write dow	n the name or formula of the:	
50		4.3.1	Inorganic reagent/reactant needed for reaction 1.	(1)
		4.3.2	Catalyst used in reaction 1.	(1)
4.4	V.	Write dow	n the:	
		4.4.1	Structural formula for compound B .	(3)
2	-	4.4.2	IUPAC name for compound C .	(3)
4.5	1	Compoun	d D belongs to the same homologous series as compound B .	
		4.5.1	Write down the name of the functional group of the homologous series to which both compounds B and D belong.	(1)
20 20		4.5.2	Write down the type of reaction represented by reaction 3. Choose from SUBSTITUTION, ADDITION or ELIMINATION.	(1)
		4.5.3	Besides heat write down ONE reaction condition for reaction 3 that will ensure the formation of the indicated products.	(1)
		4.5.4	Balanced equation for reaction 3, using molecular formulae.	(3) [17]

QUESTION 5 (Start on a new page.)


62,25 g of calcium carbonate chips are added to an EXCESS dilute hydrochloric acid solution in a flask placed on a balance as illustrated below. The balanced equation for the reaction that takes place is:

$$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + CO_2(g) + H_2O(l)$$

5.1 It is observed that the initial mass of the flask and its contents decreases as the reaction progresses. Write down the reason why the initial mass decreases.

The loss in mass of the flask and its contents is recorded. The results obtained are shown in the graph below.

Copyright reserved

Proudly South African

Physical Sciences/P2 APERS This Paper was downloaded from properties of 2025 Preparatory Examination

The average gradient of the above graph for the time interval 0 to t1 minutes is 1,37 g.min⁻¹.

- (2)5.2 Define the term reaction rate.
- (2)Explain the shape of the graph for the time interval t1 to t2 minutes. 5.3
- Apart from concentration and temperature changes, write down TWO other 5.4 changes that can be made to increase the rate of this reaction. (2)
- (8)Calculate the value of t₁ in minutes. 5.5
- The experiment is now repeated using hydrochloric acid of a higher 5.6 concentration. How would a higher concentration of hydrochloric acid affect the following: (Write down only INCREASES, DECREASES or REMAINS THE SAME.)
 - (1)5.6.1 Loss in mass per unit time.
 - 5.6.2 Total loss in mass. (2)Give a reason for the answer.
- (3)Use the collision theory to explain the answer to question 5.6.1 5.7 [21]

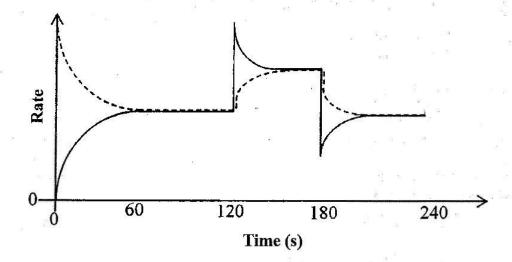
QUESTION 6 (Start on a new page.)

Copyright reserved

Gas A2Q is introduced into a flask, which is then sealed, and allowed to reach dynamic chemical equilibrium at a certain temperature. The gas A₂Q decomposes as shown in the balanced chemical equation below:

$$2A_2Q(g) \Rightarrow 2A_2(g) + Q_2(g)$$

- (1) Describe ONE method to FAVOUR ONLY the FORWARD reaction. 6.1
- Initially 5 moles of the gas A2Q are introduced into the reaction flask. The 6.2 flask is then sealed and kept at a constant temperature. When dynamic chemical equilibrium is established, 70.59 % of the gas A₂Q has decomposed and the concentration of gas Q2 in the flask is 0,8825 mol.dm⁻³.


Calculate the value of the equilibrium constant (Kc) for this reaction at this (9)constant temperature.

Physical Sciences/P2

This Paper was downloaded from SAEXAMPAPERS

September 2025 Preparatory Examination

The graph below shows the changes in the rates of the forward and reverse reactions with time for the reaction above.

6.3 A change was made to the reaction at 120 s. Refer to the graph and write down a reason for why this change is NOT the addition of a catalyst.

(1)

6.4 State Le Chatelier's Principle.

(2)

6.5 The temperature was changed at 180 s. Refer to the graph and Le Chatelier's Principle to write down how this change in temperature will affect the Kc value. Choose from GREATER THAN, EQUAL TO or LESS THAN the value calculated in question 6.2.

(1)

6.6 Refer to the graph and Le Chatelier's Principle to explain the answer to question 6.5.

(3)[17] This Paper was downloaded from SAEXAMPAPERS Preparatory Examination

QUESTION 7 (Start on a new page.)

- 7.1 The salt sodium ethanoate (CH₃COONa) is produced when ethanoic acid (CH₃COOH) reacts with sodium hydroxide (NaOH).
 - 7.1.1 Write down the formula of the conjugate base of the acid CH₃COOH. (1)
 - 7.1.2 Will the pH of a solution of sodium ethanoate be GREATER THAN 7, EQUAL TO 7 or LESS THAN 7. (1)
 - 7.1.3 Write a balanced equation to support the answer to question 7.1.2 (3)
- 7.2 An aqueous solution HCl reacts with an aqueous solution of Na₂CO₃ according to the following balanced equation:

$$2HC\ell(aq) + Na_2CO_3(aq) \rightarrow 2NaC\ell(aq) + CO_2(g) + H_2O(\ell)$$

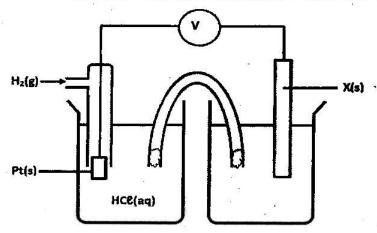
7.2.1 Define the term strong acid.

(2)

50 cm³ of a solution of dilute hydrochloric acid, HCl(aq) is added to 25 cm³ of a 0,075 mol.dm⁻³ solution of sodium carbonate, Na₂CO₃(aq) at 25 °C. The HCl is in EXCESS.

The concentration of the EXCESS HCl in the resulting solution is 0.013 mol.dm⁻³.

7.2.2 Calculate the pH of the 50 cm³ of HCl solution that was initially added to the Na₂CO₃ solution. Assume the temperature remains at 25 °C. (10)


[17]

This Paper was downloaded from SAEXAMBARERS are paratory Examination

QUESTION 8 (Start on a new page.)

A electrochemical cell is set up, under STANDARD CONDITIONS as shown below. A standard hydrogen electrode is connected to metal **X** in a solution of its ions.

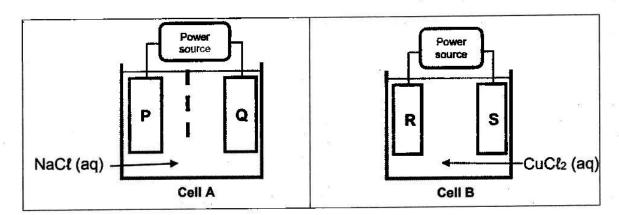
The following observations were made while the cell was in operation:

- (I) The pH of the HCl(aq) decreases.
- (II) The initial emf of the cell is 0,34 V.

(II) The	ınıtıaı emf	of the cell is 0,34 V.		
8.1	Which ele	ectrode, X or Pt is the anode of the above cell.	(1)	
8.2		mass of the platinum (Pt) INCREASE, DECREASE or REMAIN the le the above cell is in operation?	(1)	
8.3	Write dow	n the:		
	8.3.1	Half-reaction to support the answer to question 8.1	(2)	
	8.3.2	Initial temperature at which the above electrochemical cell operates.	(1)	
	8.3.3	Initial concentration of the HCl(aq) solution.	. (1)	
8.4	Refer to the table of standard reduction potential table to write down the formula of the cations in the cathode compartment of the above cell.			

- 8.5 Hence write down the cell notation for this cell. (3)
- 8.6 The hydrogen half-cell is replaced with another half-cell that undergoes oxidation. The initial emf of the cell under STANDARD CONDITIONS changes to 0,75 V. Fully explain if the platinum electrode is still required. (Choose from YES or NO) Support the answer with a relevant calculation.

(6) [1**6**]


SA EXAM This Paper was downloaded from SAEXAMPAPERS

Physical Sciences/P2

September 2025 Preparatory Examination

QUESTION 9 (Start on a new page.)

Two different cells, A and B are shown in the diagrams below. Cell A contains a concentrated solution of sodium chloride (NaCl) and cell B contains a concentrated solution of copper(II) chloride (CuCl2). P, Q, R and S are identical carbon electrodes. Chlorine gas is formed at electrode P and S.

- 9.1 Are the above cells ELECTROLYTIC or GALVANIC?

 Give a reason for your answer. (2)
- 9.2 Define an electrolyte. (2)
- 9.3 Write down the equation for the half reaction taking place at electrode Q. (2)
- 9.4 Write down the NAME or SYMBOL of the product formed at electrode R. (1)
- 9.5 What happens to the concentration of the electrolyte in cell B when the cell is in operation?
 Write down INCREASES, DECREASES or REMAINS THE SAME.

Give a reason for the answer.

(3) [10] [150]

DATA FOR PHYSICAL SCIENCES GRADE 12 PAPER 2 (CHEMISTRY)

GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 12 VRAESTEL 2 (CHEMIE)

TABLE 1: PHYSICAL CONSTANTS/TABEL 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE
Standard pressure Standaarddruk	pθ	1,013 x 10 ⁵ Pa
Molar gas volume at STP Molêre gasvolume by STD	Vm	22,4 dm ³ ·mol ⁻¹
Standard temperature Standaardtemperatuur	Τθ	273 K
Charge on electron Lading op elektron	е	-1,6 x 10 ⁻¹⁹ C
Avogadro's constant Avogadro-konstante	Na	6,02 x 10 ²³ mol ⁻¹

TABLE 2: FORMULAE/TABEL 2: FORMULES

$n = \frac{m}{M}$	$n = \frac{N}{N_A}$
$c = \frac{n}{V}$ or/of $c = \frac{m}{MV}$	$n = \frac{V}{V_m}$
$\frac{\mathbf{C_a V_a}}{\mathbf{C_b V_b}} = \frac{\mathbf{n_a}}{\mathbf{n_b}}$	$pH = -log[H_3O^+]$
$K_w = [H_3O^+][OH^-] = 1 \times 10^{-14} \text{ at/by } 298$	Κ
$E_{cell}^{\theta} = E_{cathode}^{\theta} - E_{anode}^{\theta} / E_{sel}^{\theta} = E_{katode}^{\theta} -$	E ^θ anode
$ \begin{array}{ c c } \hline \text{or/of} \\ E_{\text{cell}}^{\theta} = E_{\text{reduction}}^{\theta} - E_{\text{oxidation}}^{\theta} / E_{\text{sel}}^{\theta} = E_{\text{reduksie}}^{\theta} \\ \end{array} $	− E ^θ oksidasie
or/of E ^θ	_ ⊏0
$E_{cell}^{\theta} = E_{oxidising agent}^{\theta} - E_{reducing agent}^{\theta} / E_{sel}^{\theta} = I = \frac{Q}{\Delta t}$	$n = \frac{Q}{e}$ where n is the number of electrons/ waar n die aantal elektrone is

TABLE 3: THE PERIODIC TABLE OF ELEMENTS

Physical Sciences/P2

₹ 🗐

175

E 3

1 1 1

102 No

101 Md

100 Fm

99 Es

38

97 **BK** 97

Cm

95 Am

94 Pu

93 N

92 U 238

91 **Pa**

90 Th 232

96

TABLE 4A: STANDARD REDUCTION POTENTIALS TABEL 4A: STANDAARD-REDUKSIEPOTENSIALE

ABEL 4A. STANDA			
Half-reaction	s/Ha	alfreaksies	Ε ^θ (V)
F ₂ (g) + 2e ⁻		2F-	+ 2,87
Co ³⁺ + e ⁻		Co ²⁺	+ 1,81
H ₂ O ₂ + 2H ⁺ +2e ⁻	*	2H₂O	+1,77
MnO ₄ + 8H ⁺ + 5e ⁻	=	$Mn^{2+} + 4H_2O$	+ 1,51
Cl ₂ (g) + 2e ⁻	===	2Ct-	+ 1,36
Cr ₂ O ₇ ²⁻ + 14H+ + 6e-	qui.	2Cr3+ + 7H2O	+ 1,33
O ₂ (g) + 4H ⁺ + 4e ⁻	=	2H ₂ O	+ 1,23
MnO ₂ + 4H ⁺ + 2e ⁻		$Mn^{2+} + 2H_2O$	+ 1,23
Pt ²⁺ + 2e ⁻	=	Pt	+ 1,20
Br ₂ (ℓ) + 2e ⁻	=	2Br	+ 1,07
NO ₃ + 4H ⁺ + 3e ⁻	=	NO(g) + 2H ₂ O	+ 0,96
Hg ²⁺ + 2e ⁻	=	Hg(ℓ)	+ 0,85
Ag⁺ + e⁻	=	Ag	+ 0,80
NO 3 + 2H+ + e-	=	$NO_2(g) + H_2O$	+ 0,80
Fe ³⁺ + e ⁻	-	Fe ²⁺	+ 0,77
O ₂ (g) + 2H ⁺ + 2e		H₂O ₂	+ 0,68
l ₂ + 2e ⁻	=	2I ⁻	+ 0,54
Cu⁺ + e⁻	-2	Cu	+ 0,52
SO ₂ + 4H ⁺ + 4e ⁻	=	S + 2H ₂ O	+ 0,45
2H ₂ O + O ₂ + 4e ⁻	蜂生	40H-	+ 0,40
Cu ²⁺ + 2e ⁻	=	Cu	+ 0,34
SO 4 + 4H+ + 2e-	-	$SO_2(g) + 2H_2O$	+ 0,17
Cu ²⁺ + e ⁻	=	Cu+	+ 0,16
Sn ⁴⁺ + 2e ⁻	=	Sn ²⁺	+ 0,15
	=	H ₂ S(g)	+ 0,14
	#	H ₂ (g)	0,00
	=	Fe	- 0,06
Pb ²⁺ + 2e ⁻	=	Pb	- 0,13
	=	Sn	- 0,14
Ni ²⁺ + 2e ⁻	-	Ni	- 0,27
	\Rightarrow	Co	- 0,28
Cd ²⁺ + 2e ⁻	=	Cd	- 0,40
Cr ³⁺ + e ⁻	蜘	Cr ²⁺	- 0,41
Fe ²⁺ + 2e ⁻	= '	Fe	- 0,44
Cr ³⁺ + 3e ⁻	-	Cr	- 0,74
Zn ²⁺ + 2e ⁻	=	Zn	- 0,76
2H ₂ O + 2e ⁻	=	H ₂ (g) + 2OH ⁻	- 0,83
Cr ²⁺ + 2e ⁻	==	Cr	- 0,91
Mn ²⁺ + 2e ⁻	#	Mn	- 1,18
Al ³⁺ + 3e ⁻	=	Al	- 1,66
Mg ²⁺ + 2e ⁻	=	Mg	- 2,36
Na+ + e-	=	Na	- 2,71
Ca ²⁺ + 2e ⁻	-	Ca	- 2,87
Sr ²⁺ + 2e ⁻	=	Sr D-	- 2,89
Ba ²⁺ + 2e ⁻	=	Ba	- 2,90
Cs+ + e-	400	Cs	- 2,92

Increasing reducing ability/Toenemende reduserende vermoë

Increasing oxidising ability/Toenemende oksiderende vermoë

P2**A**3 - 3,05

TABLE 4B: STANDARD REDUCTION POTENTIALS TABEL 4B: STANDAARD-REDUKSIEPOTENSIALE

Half-reactions/	Hal	freaksies	Ε ^θ (V)
Li* + e-	#	Li	- 3,05
K⁺ + e⁻	₩	K	- 2,93
Cs+ + e-	#	Cs	- 2,92
Ba ²⁺ + 2e ⁻	=	Ва	- 2,90
Sr ²⁺ + 2e ⁻	=	Sr	- 2,89
Ca ²⁺ + 2e ⁻	==	Ca	- 2,87
	=	Na	- 2,71
Mg ²⁺ + 2e ⁻	*	Mg	- 2,36
	=	Αℓ	- 1,66
	#	Mn	- 1,18
WANTED TO STATE OF THE PARTY OF	-	Cr	- 0,91
	\Rightarrow	H ₂ (g) + 2OH ⁻	- 0,83
	=	Zn	- 0,76
Cr ³⁺ + 3e ⁻	=	Cr	- 0,74
Fe ²⁺ + 2e ⁻	=	Fe	- 0,44
	⇒	Cr²+	- 0,41
	-	Cd	- 0,40
Co ²⁺ + 2e ⁻	=	Co	- 0,28
	=	Ni Sa	- 0,27 - 0,14
Sn ²⁺ + 2e ⁻	=	Sn	- 0,14 - 0,13
Pb ²⁺ + 2e ⁻	**	Pb Fe	- 0,13 - 0,06
Fe³+ + 3e⁻ 2H+ + 2e⁻	=	10 9000	0,00
S + 2H* + 2e	=	H ₂ (g) H ₂ S(g)	+ 0,14
Sn ⁴⁺ + 2e	-	Sn ²⁺	+ 0,15
Cu ²⁺ + e ⁻	#	Cu ⁺	+ 0,16
2	=	SO ₂ (g) + 2H ₂ O	+ 0,17
Cu ²⁺ + 2e ⁻	-	Cu	+ 0,34
2H ₂ O + O ₂ + 4e ⁻		40H-	+ 0,40
terral services care	=	S + 2H ₂ O	+ 0,45
Cu+ + e-		Cu	+ 0,52
l ₂ + 2e ⁻	-	2l ⁻	+ 0,54
O ₂ (g) + 2H ⁺ + 2e ⁻	=	H ₂ O ₂	+ 0,68
Fe ³⁺ + e ⁻	-	Fe ²⁺	+ 0,77
NO 3 + 2H+ + e-	=	$NO_2(g) + H_2O$	+ 0,80
Ag+ + e-	=	Ag	+ 0,80
	=	Hg(ℓ)	+ 0,85
NO - + 4H+ + 3e-	=	NO(g) + 2H ₂ O	+ 0,96
Br ₂ (l) + 2e ⁻	=	2Br	+ 1,07
	=	Pt	+ 1,20
MnO ₂ + 4H ⁺ + 2e ⁻	=	$Mn^{2+} + 2H_2O$	+ 1,23
$O_2(g) + 4H^+ + 4e^-$	=	2H ₂ O	+ 1,23
Cr ₂ O ₇ ²⁻ + 14H ⁺ + 6e ⁻	=	2Cr ³⁺ + 7H ₂ O	+ 1,33
Cl ₂ (g) + 2e ⁻	=	2C{-	+ 1,36
MnO - + 8H+ + 5e-	=	$Mn^{2+} + 4H_2O$	+ 1,51
H ₂ Q ₂ + 2H ⁺ +2 e ⁻	=	2H ₂ O	+1,77
Co ³⁺ SeA F ₂ (g) + 2e ⁻	≠	X ° A M P A	A P¹E¹R + 2,87

Proudly South African

Increasing reducing ability/Toenemende reduserende vermoë

Increasing oxidising ability/Toenemende oksiderende vermoë