

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

SA EXAM This Paper was downloaded from SAEXAMPAPERS

DEPARTMENT OF EDUCATION

NATIONAL SENIOR CERTIFICATE

GRADE 12

PHYSICAL SCIENCES: CHEMISTRY (P2) SEPTEMBER 2025

MARKS: 150

TIME: 3 hours

This question paper consists of 17 pages, 4 data sheets.

INSTRUCTIONS AND INFORMATION

- 1. Write your name and surname (and centre number if applicable) in the appropriate spaces on the ANSWER BOOK/ANSWER SHEET.
- This question paper consists of NINE questions. Answer ALL the questions in the ANSWER BOOK.
- Start EACH question on a NEW page in the ANSWER BOOK.
- Non-programmable calculators may be used.
- Appropriate mathematical instruments may be used.
- Leave ONE line between two sub questions, e.g. between QUESTION 2.1 and QUESTION 2.2.
- 7. Number the answers correctly according to the numbering system used in this question paper.
- Data sheets are attached for your use.
- 9. Wherever motivations, discussions, et cetera are required, be brief.
- Show ALL formulae and substitutions in ALL calculations.
- Write neatly and legibly.

QUESTION1: MULTIPLE CHOICE QUESTIONS

Four possible options are provided as possible answers to the following questions. Each question has only ONE correct answer. Choose the correct answer and write only the letter (A - D) next to the question number (1.1 - 1.10) in the ANSWER BOOK, e.g. 1.11 E

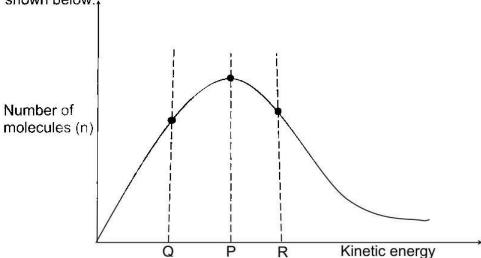
- 1.1 Which one of the following compounds is unsaturated hydrocarbon?
 - A. CH₃CH₂CH₂CH₂CH₂CH₂CH₃
 - B. CH₃CH(CH₃)CH₂CH₂CH₂CH₂CH₃
 - C. CH₃CH₂CHCHCH₂CH₂CH₂CH₃
 - D. CH₃C(CH₃)₂C(CH₃)₂CH₃

Which of the following is the functional group for ketones?

- A. Carbonyl group.
- 1.2 B. Carboxyl group.
 - C. Formyl group.
 - D. Hydroxyl group. (2)

Which of the following pairs of organic compounds are chain isomers?

- A. Butane and methyl butane.
- 1.3 B. Hexane and 2,2 dimethyl butane.
 - C. 2 methyl pentane and 3 methyl pentane.
 - D. Pentanoic acid and methylbutanoate.


Which one of the following compounds is a product of the cracking of octane?

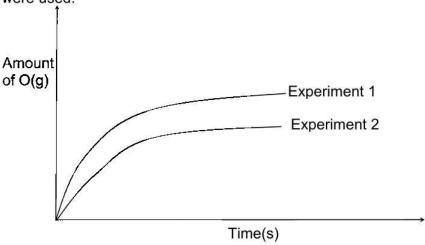
- 1.4 A. CH₂CH₂.
 - B. CH₃CH₂CI
 - C. CH₃CH₂Br
 - D.CH₃CHO (2)

1.5

This Paper was downloaded from SAEXAMPAPERS DoE/September2025

The Boltzman distribution curve for a certain gas at constant temperature is shown below:

If the temperature of the gas is REDUCED by 20°C, the shape of the graph changes.


What happens to the values of n for the kinetic energies Q, P and R?

Q	Р	R
Higher.	Lower.	Higher.
Higher.	Lower.	Lower.
Lower.	Higher.	Lower.
Lower.	Lower.	Lower.
	Higher. Higher. Lower.	Higher. Lower. Lower. Lower. Higher. Higher.

1.6 Consider the following hypothetical reversible reaction below:

$$M(g) + N(g) \rightleftharpoons O(g) + P(I)$$

Two experiments in which the production of O was measured were carried out. The results are shown in the graph below. The same initial amounts of M and N were used.

What change in the conditions can explain the results shown?

- A. A lower pressure was used in experiment 2.
- B. A catalyst was used in experiment 2.
- C. A higher temperature was used in experiment 2.
- D. A lower temperature was used in experiment 2.
- 1.7 Which of the following statements is/are true regarding the equivalence point of a reaction between ethanoic acid and sodium hydroxide?
 - (i) It is the point where the acid and the base have reacted so that neither is in excess.

(ii)
$$[H_3O^+] = [OH^-]$$

(iii)
$$pH = 7$$

A. (i) only.

B. (i) and (ii).

C. (i), (ii) and (iii).

D. (ii) and (iii). (2)

1.8 A beaker contains a dilute solution of hydrochloric acid. A second beaker contains a solution of sodium hydroxide. Water is added to EACH solution. What happens to the pH of each solution?

Hydrochloric acid solution	Sodium hydroxide solution	1 %
Decreases.	Increases.	
Increases.	Decreases.	3
Decreases.	Decreases.	(2)
Increases.	Increases.	
	Decreases. Increases. Decreases.	Decreases. Increases. Decreases. Decreases. Decreases.

1.9 Consider the galvanic cell represented by the cell notation below:

 $Ni(s)/Ni(NO_3)_2(aq)//AgNO_3(aq)/Ag(s)$

Which one of the following describes the movement of ions between the two half cells?

Positive ions	Negative ions	
From Ni to Ag.	From Ni to Ag.	
From Ni to Ag.	From Ag to Ni.	1 (
From Ag to Ni.	From Ag to Ni.	9
From Ag to Ni.	From Ni to Ag.	(2
	From Ni to Ag. From Ag to Ni.	From Ni to Ag. From Ni to Ag. From Ag to Ni. From Ag to Ni. From Ag to Ni.

1.10 Which ONE of the half reactions below will occur at the POSITIVE electrode during the electrolysis of CuCl₂(aq)?

A.
$$Cu^{2+} + 2e^{-} \rightarrow Cu$$

B.
$$2H_2O + 2e^- \rightarrow H_2 + 2OH^-$$

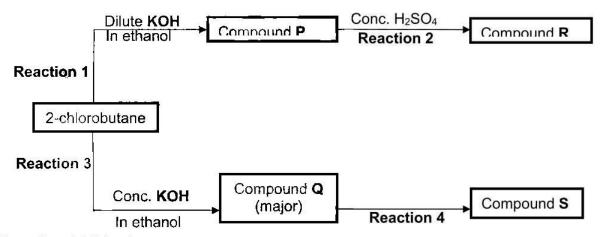
C.
$$2H_2O \rightarrow O_{2+4H}^+ + 2e^-$$

$$D. 2Cl^- \rightarrow Cl_2 + 2e^- \tag{2}$$

[20]

The table below represents organic compounds. Study the table and answer the questions that follow.

	Α	НСНО	В	CH ₃ -CHBr-CH ₂ -C(CH ₃) ₃	ř.
	С	C(CH ₃)₄	D	CH ₃ (CH ₂) ₂ CHCH ₂	
	Е	CxHy	F	Methyl propanoate	
2.1	· E	Define the term chain isomer.		•	(2)
2.2		Write down the:			
	2.2.1	Letter that represents a chain	ison	ner of pentane.	(1)
	2.2.2	IUPAC name of compound B.			(3)
	2.2.3	IUPAC name of compound D .			
	2.2.4	GENERAL FORMULA of the libelongs.	nom	ologous series to which compound D	(1)
2.3		Draw a STRUCTURAL FORMULA of compound F.			(2)
2.4		Write down a balanced equation, using MOLECULAR FORMULAE, for the complete combustion of compound C .			
2.5		To which homologous series does A belongs?			
2.6		C. Determine the values of X		extra 20% of C-atoms than compound Y.	(4)
					[19]



The melting and boiling points of the first four straight-chain alkanes are compared under the same conditions.

Number of C atoms	Name	Melting point	Boiling point
1	Methane	183	-162
2	Ethane	-172	-89
3	Propane	-186	-42
4	Butane	-136	0

3.1	Define the term melting point.	(2)
3.2	What CONCLUSION can be drawn from data in the table?	(2)
3.3	How will the strength of intermolecular forces butane compare to its isomer? Write only STRONGER THAN, WEAKER THAN or EQUAL TO.	(1)
3.4	Is this comparison fair or unfair? Give a reason to your answer.	(2)
3.5	In which phase will propane be at room temperature? Write only GAS, LIQUID or SOLID.	(1)
3.6	Explain the difference in boiling point between ethane and propane.	(3)
		[11]

The flow diagram below shows different organic reactions. Compounds P, Q, R and S are organic compounds.

- 4.1 Reaction 1, Write down:
 - 4.1.1 The TYPE of reaction. (1)
 - 4.1.2 IUPAC name of compound **P**. (2)
- 4.2 Consider reaction 2.
 - 4.2.1 Write down the STRUCTURAL formula of compound R. (2)
 - 4.2.2 Apart from concentrated sulphuric acid, what is the other condition for this reaction to take place? (1)
- 4.3 For **reaction 3**, write down:
 - 4.3.1 A balanced equation using STRUCTURAL FORMULAE for this reaction. (5)
 - 4.3.2 The IUPAC name of compound **Q**. (2)
- 4.4 **Reaction 4**: compound S is an alkane. Write down the:
 - 4.4.1 TYPE of reaction. (1)
 - 4.4.2 NAME or FORMULA of a catalyst needed for this reaction (1)
- 4.5 Compound **S**, can undergo cracking under certain conditions.
 - 4.5.1 Define the term cracking. (2)
 - 4.5.2 Except for high temperature and high pressure, what is the other condition required for compound S to undergo cracking? (1)

 [18]

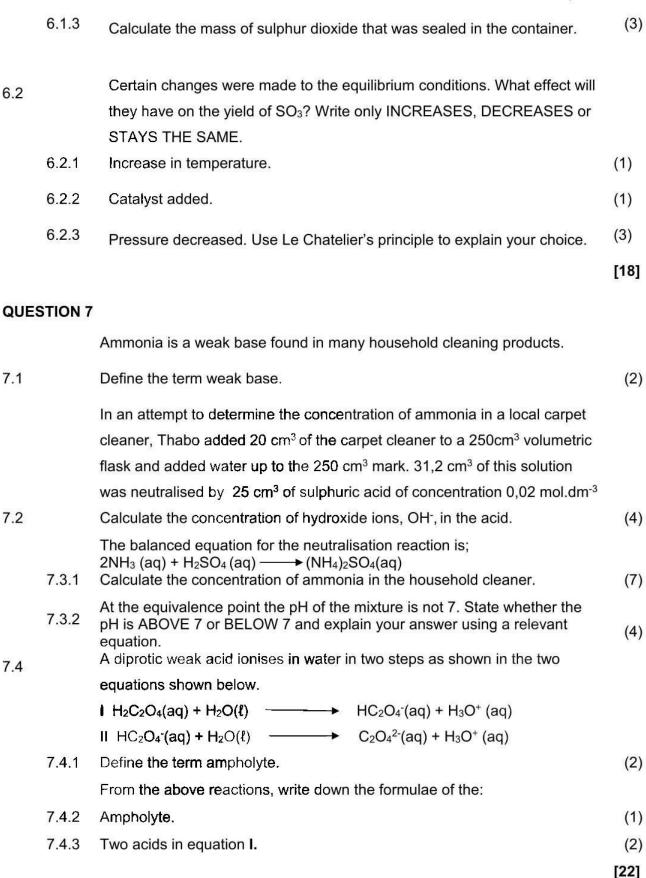
Rolaids is a tablet which contains calcium carbonate as one of the active ingredients. A pharmacist wants to determine the rate of reaction between stomach acid and Rolaids. He performs an experiment using calcium carbonate powder and concentrated hydrochloric acid of concentration 0,1mol/dm³. He then performs the same experiment using a lump of calcium carbonate of the same mass as the powder. The reaction takes place according to the following chemical equation:

$$CaCO_3(s) + 2HCI(aq) \rightarrow CaCI_2(aq) + H_2O(I) + CO_2(g)$$

5.1	Define the term rate of reaction.	(2)
5.2	What type of reaction takes place between the Rolaids tablet and hydrochloric acid?	(1)
5.3	The pharmacist repeated the same experiment using the same mass of calcium carbonate lumps. Which factor affecting the rate of reaction is the pharmacist investigating?	(1)
5.4	What is the dependent variable for the investigation?	(1)
5.5	In the second experiment 53cm ³ of carbon dioxide was produced in one minute. Calculate the average rate of reaction in <i>mol.s</i> ⁻¹ .	(5)
		[10]

QIUESTION 6

6.1 The following reaction is one of the steps in the production of sulphuric acid:


$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g) \bigtriangleup H = \text{-}196kJ/mol}$$

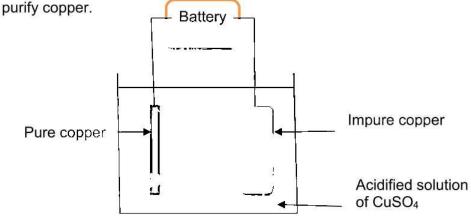
- 6.1.1 Define the term chemical equilibrium.
- 6.1.2 In an industry, they mix a certain moles x of sulphur dioxide with 0,5 mol of oxygen gas. The reaction proceeds until equilibrium is reached in a 2dm³ container. Upon analysis of the equilibrium mixture it was discovered that a quarter (1/4) of the initial number of moles of oxygen remains. The Kc value for this reaction is 10. Calculate the initial number of moles of sulphur dioxide that was in the container.

SA EXAM PAPERS

(2)

(8)

A galvanic cell is set up under standard conditions as represented by the cell notation below.


Cr[Cr3+(aq)||Sn4+(aq)|Sn2+(aq)|Pt

- 8.1 Define the term galvanic cell. (2)
- 8.2 Write down the standard conditions under which this cell operates. (2)
- 8.3 Write down the formula of the:
 - 8.3.1 (1) Cathode.
 - 8.3.2 (1) Reducing agent.
- What is the total concentration of tin ions in the electrolyte of the Sn half-8.4 (1) cell?
- 8.5 Write down a balanced equation for the net cell reaction. (3)
- 8.6 Calculate the initial Emf of the cell. (4)
- How does an increase in the initial concentration of Cr3+ ions affect the 8.7 voltmeter reading? Write only INCREASES, DECREASES or REMAINS (1) THE SAME

[16]

QUESTION 9

Copper metal of very high purity is required to manufacture electrical copper cables. The diagram below shows an electrochemical cell used to

9.1 Define the term electrolysis.

> SA EXAM PAPERS Proudly South African

		SA EXAM PAPERS	This Pape	er was downloaded from	SAEXAMPAPERS DoE/Septen	nber2025
9.2		Write down a balanced equation for the anode half reaction.				(2)
9.3		Which electrode is the positive electrode of the cell? Write only PURE COPPER or IMPURE COPPER.				
9.4		The impure copper	contains	zinc, silver, gold and	nickel as impurities	
	9.4.1	Identify one impurit	y that ma	ay be oxidised.		(1)
	9.4.2	Explain your answe	er to 9.3.1	T.		(2)
	9.4.3	State what happens	s to the ir	mpurities that are not	oxidised.	(1)
			ighed be	gh the solution for a c fore and after electro	ertain period of time. The lysis. The results are	
				ass of impure	Mass of pure	7
				opper(g)	copper(g)	_
		Before electrolysis		00	150	_
		After electrolysis	_384899	90	320	
9.5		Use the information impure copper.	in the ta	ible to calculate the p	ercentage purity of the	(4)
9.6		100 mm 10		ntration of the electrol	yte during the process?	(3) [16]

TOTAL: 150

NATIONAL SENIOR CERTIFICATE NASIONALE SENIOR SERTIFIKAAT

DATA FOR PHYSICAL SCIENCES GRADE 12

PAPER 2 (CHEMISTRY) **GEGEWENS VIR FISIESE WETENSKAPPE GRAAD 12**

VRAESTEL 2 (CHEMIE) TABLE 1: PHYSICAL CONSTANTS / TABLE 1: FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE
Standard pressure Standaarddruk	pθ	1,013 x 10 ⁵ Pa
Molar gas volume at STP Molêre gasvolume by STD	V _m	22,4 dm ³ ·mol ⁻¹
Standard temperature Standaardtemperatuur	Tθ	273 K
Charge on electron Lading op elektron	е	-1,6 x 10 ⁻¹⁹ C
Avogadro's constant Avogadro se konstante	NA	6,02 x 10 ²³ mol ⁻¹

TABLE 2: FORMULAE / TABEL 2: FORMULES

$n=\frac{m}{M}$	$n = \frac{N}{N_A}$
$c = \frac{n}{V}$ OR/OF $c = \frac{m}{MV}$	$n = \frac{V}{V_M}$
$\frac{c_a V_a}{c_b V_b} = \frac{n_a}{n_b}$	$pH = -\log[H_3O^+]$

$$K_w = [H_3O^+][OH^-] = 1 \times 10^{-14} \text{ at/by } 298 \text{ K}$$

$$\mathsf{E}^{\theta}_{\mathsf{cell}} = \mathsf{E}^{\theta}_{\mathsf{cathode}} - \mathsf{E}^{\theta}_{\mathsf{anode}} / \mathsf{E}^{\theta}_{\mathsf{sel}} = \mathsf{E}^{\theta}_{\mathsf{katode}} - \mathsf{E}^{\theta}_{\mathsf{anode}}$$

$$E_{\textit{cell}}^{\theta} = E^{\theta}_{\textit{reduction}} - E^{\theta}_{\textit{oxidation}} / E^{\theta}_{\textit{sel}} = E^{\theta}_{\textit{reduksie}} - E^{\theta}_{\textit{oksidasie}}$$

Or/of

$$\mathsf{E}_{\mathsf{cell}}^{\theta} = \mathsf{E}_{\mathsf{oxidising agent}}^{\theta} - \mathsf{E}_{\mathsf{reducing agent}}^{\theta} / \mathsf{E}_{\mathsf{sel}}^{\theta} = \mathsf{E}_{\mathsf{oksideer middel}}^{\theta} - \mathsf{E}_{\mathsf{reduseer middel}}^{\theta}$$

€ 18 9 17 19 19 80 85 53 85 85 At At **3**4 5 **Z** 5 8'Z 16 S 33 Se 79 79 79 79 ∞ 0 % 69 169 <u>3</u>9 As 33 34 122 Sb 7.7 2,4 209 2,0 2,1 3,5 3 13 68 Er 167 82 **Pb** 99 207 0'ε 67 **Ho 4** § 8,1 8,1 8'l 8'1 5,5 13 A& 27 27 31 Ga 70 70 115 81 **Te** 204 96 163 13 Cd 65 7,1 80 7,1 8,1 9'١ 5,0 TABLE 3: THE PERIODIC TABLE OF ELEMENTS TABEL 3: DIE PERIODIEKE TABEL VAN ELEMENTE 65 Tb 12 63,5 Ag 7,7 108 79 Au 9'١ ا₉ 64 Gd Approximate relative atomic mass

Beggderd5gelatiege atoggmass28

Cr 2 Mn 2 Fe 2 Co 2 Ni 2 Cu
52 55 56 59 59 63,
42 43 44 45 46 47

C Mo 2 Tc 2 Ru 2 Rh 2 Pd 2 0

T Mo 2 Tc 2 To 3 Ru 2 Rh 2 Pd 2 10

W Re Os Ir Pt Au

I 184 186 190 192 195 195 7 63 **Eu** 152 10 Simbool Symbol Sm 150 Atomic number **Atoomgetal** 63,5 Pm 61 œ 8 **S** 4 KEYISLEUTEL **P** 59 ဖ 8'I Ce 58 5 ۱'9 4 s'۱ かし 9'۱ 3 ٤'١ ۲'z Be 9 9 9 17 17 17 17 137 137 137 137 137 **3** 7 Z'l 0'L ٥'١ 6'0 6'0 BAERAM BAREEST

Proudly South Affican

Copyright reserved

103 L

102 No

101 **M**d

100 Fm

99 Es

8 5

94

S L

95 Am

94 Pu

8 9

92 U

91 **Pa**

90 Th

 $E^{\theta}(V)$

+ 2,87

Half-reactions/Halfreaksies

 $F_2(g) + 2e^-$

Co ³⁺ + e ⁻	==	Co ²⁺	+ 1,81
H ₂ O ₂ + 2H ⁺ +2e ⁻	==	2H ₂ O	+1,77
MnO _ + 8H+ + 5e-	=	Mn ²⁺ + 4H ₂ O	+ 1,51
Cl ₂ (g) + 2e	=	2Cℓ ⁻	+ 1,36
$Cr_2O_7^{2-} + 14H^+ + 6e^-$	=	2Cr ³⁺ + 7H ₂ O	+ 1,33
O ₂ (g) + 4H ⁺ + 4e ⁻	=	2H₂O	+ 1,23
MnO ₂ + 4H ⁺ + 2e ⁻	=	Mn ²⁺ + 2H ₂ O	+ 1,23
Pt ²⁺ + 2e ⁻	-	Pt	+ 1,20
$Br_2(\ell) + 2e^{-}$	==	2Br	+ 1,07
NO ₃ + 4H ⁺ + 3e ⁻	=	NO(g) + 2H ₂ O	+ 0,96
Hg ²⁺ + 2e ⁻	=	Hg(ℓ)	+ 0,85
Ag+ + e-	=	Ag	+ 0,80
$NO_3^- + 2H^+ + e^-$	=	$NO_2(g) + H_2O$	+ 0,80
Fe ³⁺ + e ⁻	-	Fe ²⁺	+ 0,77
$O_2(g) + 2H^+ + 2e^-$	-	H ₂ O ₂	+ 0,68
l ₂ + 2e ⁻	-	2I ⁻	+ 0,54
Cu' + e"	\Rightarrow	Cu	+ 0,52
SO ₂ + 4H+ + 4e-	-	S + 2H ₂ O	+ 0,45
2H ₂ O + O ₂ + 4e ⁻	-	40H-	+ 0,40
Cu2+ + 2e	-	Cu	+ 0,34
SO 4 + 4H+ + 2e	<u> 204</u>	SO ₂ (g) + 2H ₂ O	+ 0,17
Cu2+ + e-	==	Cu+	+ 0,16
Sn4+ + 2e	**	Sn ²⁺	+ 0,15
S + 2H+ + 2e-	=	H₂S(g)	+ 0,14
2H⁺ + 2e⁻	=	H₂(g)	0,00
Fe ³⁺ + 3e ⁻	==	Fe	-0,06
Pb ²⁺ + 2e ⁻	-	Pb	-0,13
Sn ²⁺ + 2e ⁻	==	Sn	- 0,14
Ni ²⁺ + 2e ⁻	\Rightarrow	Ni	-0,27
Co ²⁺ + 2e ⁻	-	Co	-0,28
Cd ²⁺ + 2e ⁻	=	Cd	- 0,40
Cr ³⁺ + e ⁻	-	Cr ²⁺	- 0,41
Fe ²⁺ + 2e ⁻	==	Fe	- 0,44
Cr ³⁺ + 3e ⁻	\Rightarrow	Cr	- 0,74
Zn ²⁺ + 2e ⁻	=	Zn	- 0,76
2H ₂ O + 2e	=	H ₂ (g) + 2OH	- 0,83
Cr ²⁺ + 2e		Cr	- 0,91
Mn ²⁺ + 2e ⁻		Mn	- 1,18
A(3+ + 3e-		Al	- 1,66
Mg ²⁺ + 2e ⁻	=	Mg	- 2,36
Na ⁺ + e ⁻ Ca ²⁺ + 2e ⁻	=	Na	- 2,71
('24' + ')a-		0-	0.07
Sr ²⁺ + 2e	# #	Ca Sr	- 2,87 - 2,89

Increasing reducing ability/Toenemende reduserende vermoë

Increasing oxidising ability/Toenemende oksiderende vermoë

-2,90- 2,92

Increasing reducing ability/Toenemende reduserende vermoë

100 F200 100 100 100 100 100 100 100 100 100	E^{θ} (V)
Li ⁺ + e ⁻	- 3,05
K⁺ + e⁻ = K	- 2,93
Cs ⁺ + e ⁻ ⇒ Cs	-2,92
$Ba^{2+} + 2e^- \Rightarrow Ba$	-2,90
$Sr^{2+} + 2e^- \Rightarrow Sr$	-2,89
$Ca^{2+} + 2e^- = Ca$	-2,87
Na⁺ + e⁻ ⇒ Na	- 2,71
$Mg^{2+} + 2e^- = Mg$	-2,36
$A\ell^{3+} + 3e^{-} = A\ell$	- 1,66
$Mn^{2+} + 2e^- \Rightarrow Mn$	- 1,18
$Cr^{2+} + 2e^- = Cr$	-0,91
$2H_2O + 2e^- \Rightarrow H_2(g) + 2OH^-$	-0,83
$Zn^{2+} + 2e^- = Zn$	-0,76
$Cr^{3+} + 3e^- \Rightarrow Cr$	-0,74
Fe ²⁺ + 2e ⁻	-0,44
$Cr^{3+} + e^- \Rightarrow Cr^{2+}$	-0,41
$Cd^{2+} + 2e^{-} \Rightarrow Cd$	-0,40
$Co^{2+} + 2e^- = Co$	-0,28
$Ni^{2+} + 2e^- = Ni$	-0,27
Sn²+ + 2e⁻ = Sn	-0,14
Pb ²⁺ + 2e ⁻ ⇒ Pb	-0,13
Fe ³++3e ⇒ Fe	-0,06
2H ⁺ + 2e ⁻ → H ₂ (g)	0,00
$S + 2H^+ + 2e = H_2S(g)$	+ 0,14
Sn⁴ + 2e = Sn²+	+ 0,15
Cu ²⁺ + e = Cu ⁺	+ 0,16
$SO_4^{2-} + 4H^+ + 2e^- = SO_2(g) + 2H_2O$	+ 0,17
$Cu^{2+} + 2e^- = Cu$	+ 0,34
$2H_2O + O_2 + 4e^- \Rightarrow 4OH^-$	+ 0,40
$SO_2 + 4H^+ + 4e^- \Rightarrow S + 2H_2O$	+ 0,45
Cu ⁺ + e ⁻ ⇒ Cu	+ 0,52
$I_2 + 2e^- = 2I^-$	+ 0,54
$O_2(g) + 2H^+ + 2e^- \Rightarrow H_2O_2$	+ 0,68
$Fe^{3+} + e^- \Rightarrow Fe^{2+}$	+ 0,77
$NO_3^- + 2H^+ + e^- = NO_2(g) + H_2O$	+ 0,80
$Ag^+ + e^- = Ag$	+ 0,80
$Hg^{2+} + 2e^{-} \Rightarrow Hg(\ell)$	+ 0,85
$NO_3^- + 4H^+ + 3e^- = NO(g) + 2H_2O$	+ 0,96
$Br_2(\ell) + 2e^- \Rightarrow 2Br^-$	+ 1,07
$Pt^{2+} + 2e^{-} \Rightarrow Pt$	+ 1,20
$MnO_2 + 4H^+ + 2e^- = Mn^{2+} + 2H_2O$	+ 1,23
$O_2(g) + 4H^+ + 4e^- \Rightarrow 2H_2O$	+ 1,23
$Cr_2O_7^{2-} + 14H^+ + 6e^- = 2Cr^{3+} + 7H_2O$	+ 1,33
$C\ell_2(g) + 2e^- = 2C\ell^-$	+ 1,36
$MnO_4^- + 8H^+ + 5e^- = Mn^{2+} + 4H_2O$	+ 1,51
$A_2O_2 + 2H^+ + 2e^- = 2H_2O$	+1,77

Increasing oxidising ability/Toenemende oksiderende vermoë