

You have Downloaded, yet Another Great Resource to assist you with your Studies ©

Thank You for Supporting SA Exam Papers

Your Leading Past Year Exam Paper Resource Portal

Visit us @ www.saexampapers.co.za

SAEXAMPAPERS
This Paper was downloaded from SAEXAMPAPERS

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

SENIOR CERTIFICATE EXAMINATIONS/ NATIONAL SENIOR CERTIFICATE EXAMINATIONS

TECHNICAL SCIENCES P2 MAY/JUNE 2025

MARKS: 75

TIME: 1½ hours

This question paper consists of 11 pages and 4 data sheets.

INSTRUCTIONS AND INFORMATION

- 1. Write your centre number and examination number in the appropriate spaces on the ANSWER BOOK.
- 2. This question paper consists of SEVEN questions. Answer ALL the questions in the ANSWER BOOK.
- 3. Start EACH question on a NEW page in the ANSWER BOOK.
- 4. Number the answers correctly according to the numbering system used in this question paper.
- 5. Leave ONE line between two subquestions, e.g. between QUESTION 2.1 and QUESTION 2.2.
- 6. You may use a non-programmable calculator.
- 7. You are advised to use the attached DATA SHEETS.
- 8. Round off your FINAL numerical answers to a minimum of TWO decimal places.
- 9. Give brief motivations, discussions, etc. where required.
- 10. Write neatly and legibly....

QUESTION 1: MULTIPLE-CHOICE QUESTIONS

Various options are provided as possible answers to the following questions. Choose the answer and write only the letter (A–D) next to the question numbers (1.1 to 1.5) in the ANSWER BOOK, e.g. 1.6 D.

- 1.1 A molecular formula is described as a ...
 - formula of an organic compound that contains carbon and hydrogen Α atoms only.
 - В formula of a compound that shows the number and the type of atoms within the compound.
 - С condensed representation used to indicate the number of carbon atoms in a compound.
 - condensed representation used to indicate the number of hydrogen D atoms in a compound. (2)
- 1.2 The following represents an industrial process involving the manufacturing of margarine from unsaturated plant oils:

$$C_2H_4 + H_2(g) \longrightarrow H - C - C - H + H + H_2(g)$$

Which ONE of the combinations below CORRECTLY characterises the process in terms of reaction type and a suitable alternative name?

	REACTION TYPE	ALTERNATIVE NAME
Α	Substitution	Hydrohalogenation
В	Elimination	Hydration
С	Addition	Halogenation
D	Addition	Hydrogenation

1.3 Which ONE of the following statements about semiconductors is TRUE?

Electrical conductivity ability ...

- Α increases as temperature decreases.
- В decreases as temperature increases.
- С is between that of a conductor and an insulator.
- is between that of a non-mataEaXdAnVnsPatorPERS D

(2)

(2)

Technical Sciences/P2 This Paper was downloaded from SAEXAMPAPERS BE/May/June 2025 SC/NSC Confidential

1.4 Which ONE of the following reactions does NOT occur spontaneously?

A Cu(s) + Fe²⁺(aq)
$$\rightarrow$$
 Cu²⁺(aq) + Fe(s)

B Fe(s) +
$$2Ag^{+}(aq) \rightarrow Fe^{2+}(aq) + 2Ag(s)$$

C
$$Zn(s) + 2H^+(aq) \rightarrow Zn^{2+}(aq) + H_2(g)$$

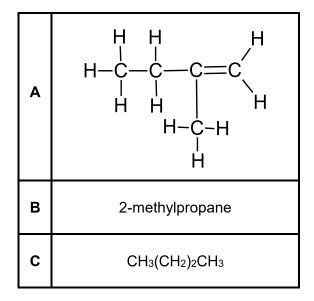
D
$$Zn(s) + Pb^{2+}(aq) \rightarrow Zn^{2+}(aq) + Pb(s)$$
 (2)

1.5 Consider the redox reaction:

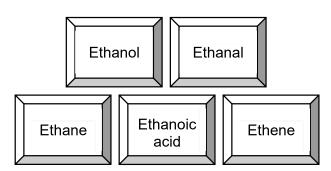
$$Zn(s)$$
 + $Cu^{2+}(aq)$ \rightarrow $Zn^{2+}(aq)$ + $Cu(s)$

The CORRECT representation of the reduction half-reaction is expressed as ...

A
$$Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$$


B
$$Zn(s) \rightarrow Zn^{2+}(aq) + 2e^{-}$$

C
$$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$$


D
$$Cu(s) \rightarrow Cu^{2+}(aq) + 2e^{-}$$
 (2) [10]

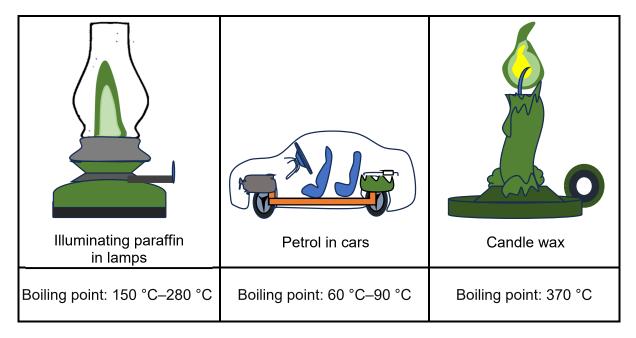
QUESTION 2 (Start on a new page.)

Consider the following organic compounds:

- 2.1 Write down the IUPAC name for compound **A**. (2)
- 2.2 Define the term *structural isomer.* (2)
- 2.3 Identify the TWO compounds which are isomers. Write down ONLY the letters. (1)
- 2.4 Consider the IUPAC names of the following compounds:

From the list above, write down the NAME of the compound representing EACH of the following:

- 2.4.1 An aldehyde (1)
- 2.4.2 Combustion of 2 moles of this compound in the presence of 7 moles of O₂ forms 4 moles of CO₂ and 6 moles H₂O (1)
- 2.4.3 Has a carboxyl group (1)

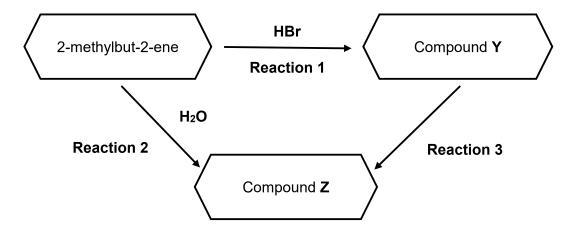


- 2.5 Ethene is used as a monomer in the preparation of polythene.
 - 2.5.1 (2) Define the term monomer.
 - 2.5.2 Name the process during which polythene is manufactured. (1)
 - 2.5.3 Name ONE industrial use of polythene. (1) [12]

QUESTION 3 (Start on a new page.)

The table below shows some organic compounds that are commonly used in everyday life. Illuminating paraffin for domestic heating and lighting, petrol in automobiles and candle wax are products of crude oil.

The general formula for these compounds is C_nH_{2n+2} .

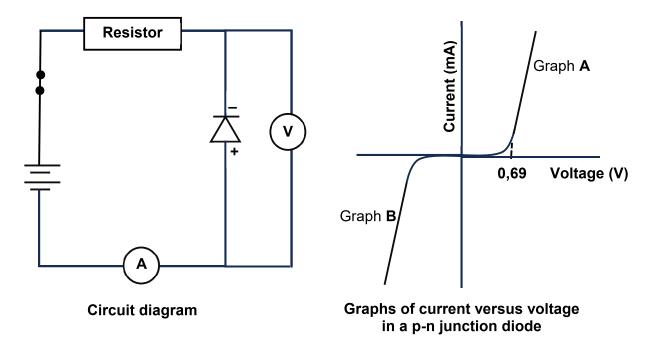

- 3.1 Consider the organic compounds represented in the table above.
 - 3.1.1 Write down the name of the homologous series to which they belong. (1)
 - 3.1.2 Draw the structural formula of their functional group. (1)
- 3.2 Identify the intermolecular forces present in these organic compounds. (1)
- 3.3 Which ONE of these compounds will have the highest viscosity? (1)
- 3.4 Which ONE of these compounds has the highest vapour pressure? Explain the answer.

(3)**[7**]

QUESTION 4 (Start on a new page.)

Study the flow diagram below of organic reactions.

2-methylbut-2-ene appears as a clear colourless liquid with a petroleum-like odour. The diagram above shows how this compound can be converted to either a haloalkane or a tertiary alcohol.

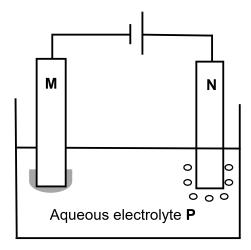

- 4.1 What is meant by the term *tertiary alcohol*? (2)
- 4.2 Write down the:
 - 4.2.1 MOLECULAR FORMULA of the organic reactant used in reaction **1** and **2** (1)
 - 4.2.2 STRUCTURAL FORMULA of compound **Y** formed in reaction **1** (3)
 - 4.2.3 IUPAC name of compound **Z** formed in reaction **2** (2)

Compound **Z** can also be formed from compound **Y** during reaction **3**.

- 4.3 Name the TYPE of reaction represented by reaction **3**. (1)
- 4.4 State TWO conditions needed for reaction **3**. (2)

QUESTION 5 (Start on a new page.)

Study the diagram and the graph below carefully and answer the questions that follow.


- 5.1 Define the term *intrinsic semiconductor.* (2)
- 5.2 Give ONE example of an intrinsic semiconductor. (1)
- What type of p-n junction diode is represented in the circuit diagram above?

 Write down only FORWARD BIASED, REVERSE BIASED or NON-BIASED. (1)
- 5.4 Explain the answer to QUESTION 5.3. (2)
- 5.5 Which ONE of the graphs describes the current-voltage characteristics of the p-n junction diode represented by the circuit diagram? Write down only Graph **A** or Graph **B**. (1)
- 5.6 Explain the characteristics of the p-n junction diode that is represented by Graph **A** when the applied voltage is increased. Refer to the RESISTANCE, the CURRENT flowing through it and the BREAK-DOWN VOLTAGE.

QUESTION 6 (Start on a new page.)

Consider the electrolytic cell below and then answer the questions that follow.

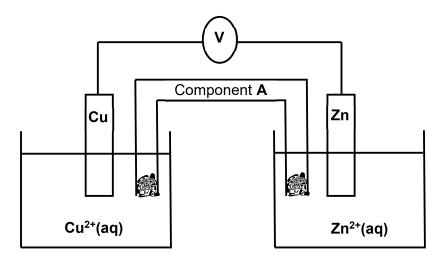
Electrodes M and N are carbon rods.

During electrolysis of aqueous electrolyte **P**, the following observations were made:

- Bubbles were formed around electrode N.
- A reddish-brown layer was formed on electrode **M**.
- The blue colour of electrolyte **P** became lighter.

6.1	Define the term <i>reduction</i> .		(2)	
6.2	Identify			
	6.2.1	Electrolyte P	(1)	
	6.2.2	The reddish-brown layer formed on electrode M	(1)	
	6.2.3	The gas formed around electrode N	(1)	
	6.2.4	The ion responsible for the blue colour of aqueous electrolyte P	(1)	

Write down the half-reaction that occurs at electrode **M**.

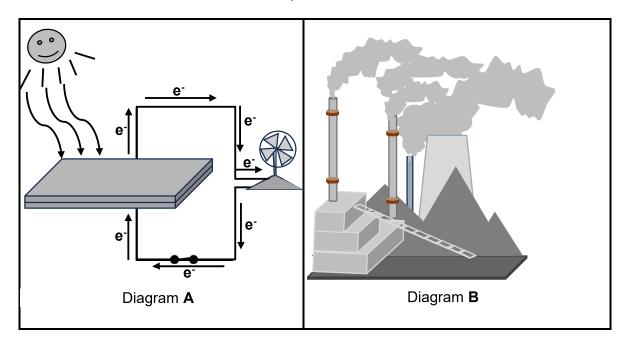

6.3

(2) **[8]** Technical Sciences/P2 This Paper was downloaded from SAEXAMPAPERS BE/May/June 2025 SC/NSC Confidential

QUESTION 7 (Start on a new page.)

The potential difference of a voltaic cell, measured experimentally by Technical Sciences learners, is COMPARED with its potential difference calculated under standard conditions.

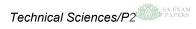
The learners set up the voltaic cell, as shown below.


The voltmeter measures an initial reading of 0,9 V.

- 7.1 Define a galvanic cell. (2)
- 7.2 State TWO functions of component A. (2)
- 7.3 In which direction do electrons flow in the external circuit when this cell delivers current? Write down only Cu to Zn or Zn to Cu. (1)
- 7.4 Calculate the initial emf of the cell above under STANDARD CONDITIONS. (4)
- 7.5 From the results obtained, the learners conclude that the measured emf differs from the calculated emf.
 - Give ONE possible reason for this difference in values. (2)

Technical Sciences/P2

This Paper was downloaded from SAEXAMPAPERS BE/May/June 2025 SC/NSC Confidential


Study Diagrams **A** and **B** below, which illustrate how energy is derived from TWO different sources, and then answer the questions that follow.

- 7.6 Which ONE of the diagrams above represents energy that has the most negative impact on the environment? Write **DIAGRAM A** or **DIAGRAM B** only. (1)
- 7.7 Give a reason for the answer to QUESTION 7.6. (2)
- 7.8 Briefly explain why South Africa is best suited to utilise the energy source represented in Diagram **A**. (2)
- 7.9 Write down ONE other source of energy, other than the sources represented in Diagrams **A** and **B**. (1) [17]

TOTAL: 75

Technical Sciences/P2 This Paper was downloaded from SAEXAMPAPER DBE/May/June 2025 SC/NSC Confidential

DATA FOR TECHNICAL SCIENCES GRADE 12 PAPER 2 **GEGEWENS VIR TEGNIESE WETENSKAPPE GRAAD 12** VRAESTEL 2

TABLE 1/TABEL 1: PHYSICAL CONSTANTS/FISIESE KONSTANTES

NAME/NAAM	SYMBOL/SIMBOOL	VALUE/WAARDE
Standard pressure	p^{θ}	5
Standaarddruk	P	1,01 x 10 ^⁵ Pa
Standard temperature	Τθ	0.00/070.1/
Standaardtemperatuur	l	0 °C/273 K

TABLE 2/TABEL 2: FORMULAE/FORMULES

Emf/ <i>Emk</i>	$E^{ heta}$ cell = $E^{ heta}$ cathode - $E^{ heta}$ anode / $E^{ heta}$ sel = $E^{ heta}$ katode - $E^{ heta}$ anode				
	or/of				
	E^{θ} cell = E^{θ} reduction - E^{θ} oxidation / E^{θ} sel = E^{θ} reduksie - E^{θ} oksidasie				
	or/of				
	E^{θ} cell = E^{θ} oxidising agent - E^{θ} reducing agent / E^{θ} sel = E^{θ} oksideermiddel - E^{θ} reduseermiddel				

18 (<u>M</u>)	10 Ne 20	– A 4 IPis BaPe	co X &	Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α Α	ර්ලෙස SAI ගෙර	L 27	703 Lr
(<u>V</u>)	0,4 T 19	17 چ دو 35,5	8, 2,8 80	53 ი 127	85 ດ, At	70 Yb 173	No N
7 <i>E</i> 16 (VI)	3,5 6 O 8	2,5 2,5 32 32		52 ດີ Te 128		69 Tm 169	D D
15 (V)			33 2, As 75			68 Er 167	T00 Fm
14 (IV)	ς,5 2 C 6		%, Ge √, Ge 73			67 Ho 165	eg Es
ELEMENTS/ <i>TABEL</i> 3: <i>DIE PERIODIEKE TABEL VAN ELEMENTE</i> 8 9 10 11 12 13 14 15 1 Atoomgetal	2,0 7 B 5	13 , A <i>l</i> 27	6 31 1, Ga 70	49 7. In 115		66 Dy 163	C 8
ODIEKE 12			9, Zn 20	48 5 Cd 112	80 Hg 201	65 Tb 159	9/ BK
IE PERI	70	(O es	29 9, Cu 63,5	47 9, Ag 108	79 Au 197	64 Gd 157	ge Cm
3 <i>EL</i> 3: <i>D</i> 10 ir	Symbol Simbool	↑ Approximate relative atomic mass <i>Benaderde relatiewe atoommassa</i>	8,1 N Si 59	46 % Pd 106	78 Pt 195	63 Eu 152	ys Am
LEMENTS/ <i>TAB</i> 8 9 Atomic numbe	29 Cu 63,5	∖ ive aton we atoo	27 Co 59	45 ດີ Rh 103	77 Ir 192	62 Sm 150	94 Du
ELEMEN 8 Atomic Atoo	6'l	ite relati <i>relati</i> ev	8, 7 1, Fe 56	2,2	76 Os 190	61 Pm	S Q
	gativity <i>gatiwit</i> e	Approxima <i>Benaderd</i> e	25 1,5 M⊓ 55	6'١	75 Re 186	60 Nd 144	92 U 238
RIODIC TABLE 5 6 KEY/SLEUTEL	Electronegativity– Elektronegatiwiteit	Apl Be	6 1,6 Cr 52	42 ∞, Mo → 96	74 W 184	59 141	Pa
TABLE 3: THE PERIODIC TABLE OF 3 4 5 6 7 KEY/SLEUTEL	Ē		ه, ا 5 > 5	41 Nb 92	73 Ta 181	58 Ce 140	90 Th 232
3: THE 4			رئ اب 22 1 = 48	40 4, Zr 91	72 © Hf 179		
TABLE 3			رم رم, ع ح 45	ر. 1,2 89 ≻	57 La 139	89 AC	
= 5	6, F 9 B 9 B	Λ,1 Mg 24	ر ب 20 40 40		56 9. Ba 137	0,9 226 226	
-€ [.Ω	- (P) (±)	6.9 23 Na	354 00			SERS	

Please turn over

TABLE 4A: STANDARD REDUCTION POTENTIALS TABEL 4A: STANDAARD-REDUKSIEPOTENSIALE

Half-reactions	Ε ^θ (V)		
F ₂ (g) + 2e ⁻	=	2F-	+ 2,87
Co ³⁺ + e ⁻	≓	Co ²⁺	+ 1,81
H ₂ O ₂ + 2H ⁺ +2e ⁻	<u>+</u>		+1,77
MnO ₄ + 8H+ + 5e ⁻	=	- Mn ²⁺ + 4H ₂ O	+ 1,51
Cℓ₂(g) + 2e⁻	\rightleftharpoons	2Cℓ ⁻	+ 1,36
Cr ₂ O ₇ + 14H ⁺ + 6e ⁻	\rightleftharpoons	2Cr ³⁺ + 7H ₂ O	+ 1,33
O ₂ (g) + 4H+ + 4e-	\rightleftharpoons	2H ₂ O	+ 1,23
MnO ₂ + 4H ⁺ + 2e ⁻	\rightleftharpoons	$Mn^{2+} + 2H_2O$	+ 1,23
Pt ²⁺ + 2e ⁻	\rightleftharpoons	Pt	+ 1,20
$Br_2(\ell) + 2e^-$	\rightleftharpoons	2Br ⁻	+ 1,07
NO ₃ + 4H+ + 3e ⁻	\rightleftharpoons	$NO(g) + 2H_2O$	+ 0,96
Hg²+ + 2e⁻	\rightleftharpoons	Hg(ℓ)	+ 0,85
Ag⁺ + e⁻	\rightleftharpoons	Ag	+ 0,80
NO ₃ + 2H+ + e-	\rightleftharpoons	$NO_2(g) + H_2O$	+ 0,80
Fe ³⁺ + e ⁻	\rightleftharpoons	Fe ²⁺	+ 0,77
O ₂ (g) + 2H ⁺ + 2e ⁻	\rightleftharpoons	H_2O_2	+ 0,68
l ₂ + 2e⁻	\rightleftharpoons	2I ⁻	+ 0,54
Cu+ + e-	\rightleftharpoons	Cu	+ 0,52
SO ₂ + 4H⁺ + 4e⁻	\rightleftharpoons	S + 2H ₂ O	+ 0,45
2H ₂ O + O ₂ + 4e ⁻	\rightleftharpoons	40H ⁻	+ 0,40
Cu ²⁺ + 2e ⁻	\rightleftharpoons	Cu	+ 0,34
SO ₄ + 4H+ + 2e ⁻	\rightleftharpoons	$SO_2(g) + 2H_2O$	+ 0,17
Cu ²⁺ + e ⁻	\rightleftharpoons	Cu⁺	+ 0,16
Sn ⁴⁺ + 2e ⁻	\rightleftharpoons	Sn ²⁺	+ 0,15
S + 2H+ + 2e-	\rightleftharpoons	$H_2S(g)$	+ 0,14
2H⁺ + 2e⁻	\rightleftharpoons	$H_2(g)$	0,00
Fe ³⁺ + 3e ⁻	\rightleftharpoons	Fe	- 0,06
Pb ²⁺ + 2e ⁻	\rightleftharpoons	Pb	- 0,13
Sn ²⁺ + 2e ⁻	\rightleftharpoons	Sn	- 0,14
Ni ²⁺ + 2e ⁻	\rightleftharpoons	Ni	- 0,27
Co ²⁺ + 2e ⁻	\rightleftharpoons	Co	- 0,28
Cd ²⁺ + 2e ⁻	\rightleftharpoons	Cd	- 0,40
Cr ³⁺ + e ⁻	\rightleftharpoons	Cr ²⁺	- 0,41
Fe ²⁺ + 2e ⁻	\rightleftharpoons	Fe	- 0,44
Cr ³⁺ + 3e ⁻	\rightleftharpoons	Cr	- 0,74
Zn ²⁺ + 2e ⁻	\rightleftharpoons	Zn	- 0,76
2H ₂ O + 2e⁻	\rightleftharpoons	H₂(g) + 2OH⁻	- 0,83
Cr ²⁺ + 2e ⁻	\rightleftharpoons	Cr	- 0,91
Mn ²⁺ + 2e ⁻	\rightleftharpoons	Mn	- 1,18
Aℓ ³⁺ + 3e ⁻	\rightleftharpoons	Αℓ	– 1,66
Mg ²⁺ + 2e ⁻	\rightleftharpoons	Mg	- 2,36
Na⁺ + e⁻	\rightleftharpoons	Na	- 2,71
Ca ²⁺ + 2e ⁻	\rightleftharpoons	Ca	- 2,87
Sr ²⁺ + 2e ⁻	\rightleftharpoons	Sr	- 2,89
Ba ²⁺ + 2e ⁻	\rightleftharpoons	Ва	- 2,90
Cs ⁺ + e ⁻	=	Cs	- 2,92
K+ + e-	=	K	- 2,93
Li⁺ + e⁻	\rightleftharpoons	Li	- 3,05

Increasing strength of reducing agents/Toenemende sterkte van reduseermiddels

Increasing strength of oxidising agents/Toenemende sterkte van oksideermiddels

SA EXAM PAPERS

SC/NSC Confidential

TABLE 4B: STANDARD REDUCTION POTENTIALS TABEL 4B: STANDAARD-REDUKSIEPOTENSIALE

Half-reactions	Ε ^θ (V)		
Li+ + e-	=	Li	- 3,05
K+ + e⁻	\rightleftharpoons	K	– 2 ,93
Cs+ + e-	\rightleftharpoons	Cs	- 2,92
Ba ²⁺ + 2e ⁻	\rightleftharpoons	Ва	- 2,90
Sr ²⁺ + 2e ⁻	\rightleftharpoons	Sr	- 2,89
Ca ²⁺ + 2e ⁻	\rightleftharpoons	Ca	- 2,87
Na+ + e-	\rightleftharpoons	Na	– 2,71
Mg ²⁺ + 2e ⁻	\rightleftharpoons	Mg	- 2,36
Al ³⁺ + 3e ⁻	\rightleftharpoons	Αl	– 1,66
Mn ²⁺ + 2e ⁻	\rightleftharpoons	Mn	– 1,18
Cr ²⁺ + 2e ⁻	\rightleftharpoons	Cr	- 0,91
2H ₂ O + 2e⁻	\rightleftharpoons	H₂(g) + 2OH⁻	- 0,83
Zn ²⁺ + 2e ⁻	\rightleftharpoons	Zn	- 0,76
Cr ³⁺ + 3e ⁻	\rightleftharpoons	Cr	- 0,74
Fe ²⁺ + 2e ⁻	\rightleftharpoons	Fe	- 0,44
Cr ³⁺ + e ⁻	\rightleftharpoons	Cr ²⁺	- 0,41
Cd ²⁺ + 2e ⁻	=	Cd	- 0,40
Co ²⁺ + 2e ⁻	=	Co	- 0,28
Ni ²⁺ + 2e ⁻	=	Ni	- 0,27
Sn ²⁺ + 2e ⁻	=	Sn	- 0,14
Pb ²⁺ + 2e ⁻	=	Pb	- 0,13
Fe ³⁺ + 3e ⁻	÷	Fe	- 0,06
2H+ + 2e-	<u>→</u>		0,00
S + 2H ⁺ + 2e ⁻	=	H ₂ S(g) Sn ²⁺	+ 0,14
Sn ⁴⁺ + 2e ⁻ Cu ²⁺ + e ⁻	1 1	Cu ⁺	+ 0,15 + 0,16
0			
SO ₄ ²⁻ + 4H ⁺ + 2e ⁻	=	$SO_2(g) + 2H_2O$	+ 0,17
Cu ²⁺ + 2e ⁻ 2H ₂ O + O ₂ + 4e ⁻	# #	Cu 4OH⁻	+ 0,34 + 0,40
SO ₂ + 4H ⁺ + 4e ⁻	+		+ 0,45
Cu+ + e-	+	Cu	+ 0,52
l ₂ + 2e ⁻	+	2I ⁻	+ 0,54
O ₂ (g) + 2H ⁺ + 2e ⁻	+	H ₂ O ₂	+ 0,68
Fe ³⁺ + e ⁻	<u>`</u>	Fe ²⁺	+ 0,77
NO ⁻ ₃ + 2H+ + e ⁻	\rightleftharpoons	$NO_2(g) + H_2O$	+ 0,80
Ag⁺ + e⁻	\rightleftharpoons	Ag	+ 0,80
Hg ²⁺ + 2e ⁻	\rightleftharpoons	Hg(ℓ)	+ 0,85
NO ⁻ ₃ + 4H ⁺ + 3e ⁻	\rightleftharpoons	NO(g) + 2H ₂ O	+ 0,96
$Br_2(\ell) + 2e^-$	\rightleftharpoons	2Br	+ 1,07
Pt ²⁺ + 2 e ⁻	· ⇌		+ 1,20
MnO ₂ + 4H ⁺ + 2e ⁻	\rightleftharpoons		+ 1,23
O ₂ (g) + 4H ⁺ + 4e ⁻	\rightleftharpoons		+ 1,23
Cr ₂ O ²⁻ ₇ + 14H ⁺ + 6e ⁻	=	2Cr ³⁺ + 7H ₂ O	+ 1,33
Cℓ ₂ (g) + 2e ⁻	\rightleftharpoons	2Cℓ ⁻	+ 1,36
MnO ₄ + 8H+ + 5e-	\rightleftharpoons	$Mn^{2+} + 4H_2O$	+ 1,51
H ₂ O ₂ + 2H ⁺ +2 e ⁻	\rightleftharpoons	2H ₂ O	+1,77
Co ³⁺ + e ⁻	\rightleftharpoons	Co ²⁺	+ 1,81
F ₂ (g) + 2e ⁻	=	2F ⁻	+ 2,87

Increasing strength of reducing agents/Toenemende sterkte van reduseermiddels

Increasing strength of oxidising agents/Toenemende sterkte van oksideermiddels

SA EXAM PAPERS